Linear recovery of pseudodifferential operators on classes of smooth functions on an m-dimensional torus. I
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 57-79
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We construct a linear method for the recovery of pseudodifferential operators on an $m$-dimensional torus with symbols from particular classes with the use of linear spectral information on the symbol of the operator and on the function (finite sets of their Fourier coefficients). Error bounds are given for the error of recovery in the space $L_r(\mathbb{T}^m)$ of values of these pseudodifferential operators on elements of Nikol'skii-Besov and Lizorkin-Triebel function spaces for a number of relations between $r$ and the parameters of the symbol classes and the function spaces (Theorem 1). A key role in the proof of the bounds is played by the boundedness of the pseudodifferential operators between appropriate Nikol'skii-Besov (Lizorkin-Triebel) function spaces (Theorem 2).
Keywords: pseudodifferential operator on m-dimensional torus, class of symbols (of product type), Nikol'skii-Besov / Lizorkin-Triebel function space, recovery of operator, error bounds of recovery.
@article{TIMM_2018_24_4_a3,
     author = {D. B. Bazarkhanov},
     title = {Linear recovery of pseudodifferential operators on classes of smooth functions on an m-dimensional torus. {I}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {57--79},
     year = {2018},
     volume = {24},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a3/}
}
TY  - JOUR
AU  - D. B. Bazarkhanov
TI  - Linear recovery of pseudodifferential operators on classes of smooth functions on an m-dimensional torus. I
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 57
EP  - 79
VL  - 24
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a3/
LA  - ru
ID  - TIMM_2018_24_4_a3
ER  - 
%0 Journal Article
%A D. B. Bazarkhanov
%T Linear recovery of pseudodifferential operators on classes of smooth functions on an m-dimensional torus. I
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 57-79
%V 24
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a3/
%G ru
%F TIMM_2018_24_4_a3
D. B. Bazarkhanov. Linear recovery of pseudodifferential operators on classes of smooth functions on an m-dimensional torus. I. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 57-79. http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a3/

[1] Khërmander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 3, Psevdodifferentsialnye operatory, Mir, M., 1987, 696 pp.

[2] Chang S.-Y.A., Fefferman R., “Some recent developments in Fourier analysis and $H^p$-theory on product domains”, Bull. Amer Math. Soc., 12 (1985), 1–43 | DOI | MR | Zbl

[3] Fefferman R., “Harmonic analysis on product spaces”, Ann. Math., 126:1 (1987), 109–130 | DOI | MR | Zbl

[4] Yamazaki M., “Boundedness of product type pseudodifferential operators on spaces of Besov type”, Math. Nachr., 133:1 (1987), 297–315 | DOI | MR | Zbl

[5] Carbery A., Seeger A., “$H^p$ and $L^p$ variants of multiparameter Calderon-Zygmund theory”, Trans. Amer Math. Soc., 334:2 (1992), 719–747 | MR | Zbl

[6] Stein E.M., Harmonic analysis: Real-variable methods, orthogonality, and oscillatory integrals, Princeton Univ. Press, Princeton, 1993, 716 pp. | MR | Zbl

[7] Bazarkhanov D.B., “Priblizhenie vspleskami i poperechniki Fure klassov periodicheskikh funktsii mnogikh peremennykh. I”, Tr. MI RAN, 269, 2010, 8–30 | Zbl

[8] Bazarkhanov D.B., “Priblizhenie vspleskami i poperechniki Fure klassov periodicheskikh funktsii mnogikh peremennykh. II”, Analysis Math., 38:4 (2012), 249–289 | DOI | MR | Zbl

[9] Coifman R., Meyer Y., “Au-dela des operateurs pseudo-differentiels”, Asterisque, 57 (1978), 1–185 | MR

[10] Bazarkhanov D.B., “$(L_p - L_q)$-ogranichennost nekotorykh psevdodifferentsialnykh operatorov na $n$-mernom tore”, Mat. zametki, 102:6 (2017), 938–942 | DOI | MR | Zbl

[11] Tribel Kh., Teoriya funktsionalnykh prostranstv, Mir, M., 1986, 448 pp.

[12] Schmeisser H.J., Triebel H., Topics in Fourier analysis and function spaces, Wiley, 1987, 300 pp. | MR | Zbl

[13] Ruzhansky M., Turunen V., Pseudo-differential operators and symmetries: background analysis and advanced topics, Birkhäuser Springer, Basel, 2009, 709 pp. | MR

[14] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, 2-e izd., Nauka, Moskva, 1977, 456 pp.

[15] Khardi G.G., Litlvud D.E., Polia G., Neravenstva, Inostr. lit., Moskva, 1948, 456 pp.

[16] Stein I., Veis. G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974, 336 pp.

[17] Nikolskii S.M., “Neravenstva dlya tselykh funktsii konechnoi stepeni i ikh primenenie v teorii differentsiruemykh funktsii mnogikh peremennykh”, Tr. MIAN, 38, 1951, 244–278

[18] Besov O.V., “Issledovanie odnogo semeistva funktsionalnykh prostranstv v svyazi s teoremami vlozheniya i prodolzheniya”, Tr. MIAN, 60, 1961, 42–81 | Zbl