Best restricted approximation of smooth function classes
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 283-294
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We first discuss the relative Kolmogorov $n$-widths of classes of smooth $2\pi$-periodic functions for which the modulus of continuity of their $r$-th derivatives does not exceed a given modulus of continuity, and then discuss the best restricted approximation of classes of smooth bounded functions defined on the real axis $\mathbb R$ such that the modulus of continuity of their $r$-th derivatives does not exceed a given modulus of continuity by taking the classes of the entire functions of exponential type as approximation tools. Asymptotic results are obtained for these two problems.
Keywords: modulus of continuity, best restricted approximation, average width.
@article{TIMM_2018_24_4_a22,
     author = {Y. Liu and G. Xu and J. Zhang},
     title = {Best restricted approximation of smooth function classes},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {283--294},
     year = {2018},
     volume = {24},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a22/}
}
TY  - JOUR
AU  - Y. Liu
AU  - G. Xu
AU  - J. Zhang
TI  - Best restricted approximation of smooth function classes
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 283
EP  - 294
VL  - 24
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a22/
LA  - en
ID  - TIMM_2018_24_4_a22
ER  - 
%0 Journal Article
%A Y. Liu
%A G. Xu
%A J. Zhang
%T Best restricted approximation of smooth function classes
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 283-294
%V 24
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a22/
%G en
%F TIMM_2018_24_4_a22
Y. Liu; G. Xu; J. Zhang. Best restricted approximation of smooth function classes. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 283-294. http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a22/

[1] N. I. Achieser, Theory of approximation, Dover Publications, INC., N Y, 1992, 307 pp. | MR

[2] V. F. Babenko, “Approximations in the mean with constraints on the derivatives of approximating functions”, (in Russian), Questions in Analysis and Approximations, Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev, 1989, 9–18 | MR

[3] Dirong Chen, “Average n-widths and optimal recovery of Sobolev classes in $L_p(\mathbb R)$”, Chinese Ann. Math. Ser. B, 13:4 (1992), 396–405 | MR | Zbl

[4] R. A. DeVore, G. G. Lorentz, Constructive approximation, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 303, Springer-Verlag, Berlin, 1993, 449 pp. | DOI | MR | Zbl

[5] R. S. Ismagilov, “On n-dimensional diameters of compacts in a Hilbert space”, Funct. Anal. Its. Appl., 2:2 (1968), 125–132 | DOI | MR | Zbl

[6] Yanjie Jiang, Widths and optimal recovery of smooth function classes, PhD thesis, Beijing Normal University, 1998

[7] V. N. Konovalov, “Estimates of Kolmogorov-type widths for classes of differentiable periodic functions”, Math. Notes, 35:3 (1984), 193–199 | DOI | MR | Zbl

[8] V. N. Konovalov, “Approximation of Sobolev classes by their finite-dimensional sections”, Math. Notes, 72:3 (2002), 337–349 | DOI | MR | Zbl

[9] V. N. Konovalov, “Approximation of Sobolev classes by their sections of finite dimension”, Ukraine Math. J., 54:5 (2002), 795–805 | DOI | MR | Zbl

[10] N. P. Korneichuk, Ekstremal'nye zadachi teorii priblizheniya[Extremal problems of approximation theory], Nauka Publ., Moscow, 1976, 320 pp. | MR

[11] N. P. Korneichuk, Exact constants in approximation theory, Encyclopedia Math. Appl., 38, Cambridge University Press, Cambridge, 1991, 466 pp. | MR | Zbl

[12] Bo Ling, Yongping Liu, “Best restriction approximation of Sobolev classes by entire functions of exponential type”, Acta Mathematica Sinica, Chinese Series, 60:3 (2017), 389–400 | MR | Zbl

[13] Yongping Liu, Infinite dimensional widths and optimal recovery on the $S - W$ spaces, PhD thesis, Beijing Normal University, 1993

[14] Yongping Liu, Weiwei Xiao, “Relative average widths of Sobolev spaces in $L_2(\mathbb R^d)$”, Anal. Math., 34:1 (2008), 71–82 | DOI | MR | Zbl

[15] G. G. Lorentz, M. V. Golitschek, Y. Makovoz, Constructive approximation. Advanced problems, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 304, Springer-Verlag, Berlin, 1996, 649 pp. | DOI | MR | Zbl

[16] G. G. Magaril-Il'yaev, “$\varphi$-mean diameters of classes of functions on the line”, Russian Math. Surv., 45:2 (1990), 218–219 | DOI | MR | Zbl

[17] G. G. Magaril-Il'yaev, “Mean dimension, widths, and optimal recovery of Sobolev classes of functions on the line”, Math. USSR-Sb., 74:2 (1993), 381–403 | DOI | MR | Zbl

[18] G. G. Magaril-Il'yaev, V. M. Tikhomirov, “Average dimension and $\nu$-widths of classes of functions on the whole line”, J. Complexity, 8:1 (1992), 64–71 | DOI | MR | Zbl

[19] S. M. Nikol'skii, Approximation of functions of several variables and embedding theorems, Springer-Verlag, Berlin; N Y, 1975, 420 pp. | MR

[20] Heping Wang, Approximation and quadrature formula on function classes with mixed smoothness, PhD thesis, Beijing Normal University, 1996 | Zbl

[21] Yongsheng Sun, Yongping Liu, Dirong Chen, “Extremal problems in approximation theory for some classes of smooth functions defined on $\mathbb R^d$”, J. Beijing Normal University (Natural Sciences), 35(supp.) (1999), 79–144

[22] V. M. Tikhomirov, “Some remarks on relative diameters”, Approximation and function spaces, Proc. 27th Semest. (Warsaw/Pol. 1986), v. 22, Banach Cent. Publ., 1989, 471–474 | MR | Zbl

[23] V. M. Tikhomirov, “On approximation properties of smooth functions”, (in Russian), Proc. Conf. on Differential Equations and Numerical Mathematics, Nauka Publ., Novosibirsk, 1980, 183–188

[24] Guiqiao Xu, Widths and optimal recovery of multivariate smooth functions, PhD thesis, Beijing Normal University, 2001 | Zbl

[25] Wei Yang, Relative widths of differentiable function classes and convolution classes with $2\pi$ periodic in one variable case and hexagonal periodic in 2-dimensional case, PhD thesis, Beijing Normal University, 2009