Voir la notice du chapitre de livre
@article{TIMM_2018_24_4_a22,
author = {Y. Liu and G. Xu and J. Zhang},
title = {Best restricted approximation of smooth function classes},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {283--294},
year = {2018},
volume = {24},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a22/}
}
Y. Liu; G. Xu; J. Zhang. Best restricted approximation of smooth function classes. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 283-294. http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a22/
[1] N. I. Achieser, Theory of approximation, Dover Publications, INC., N Y, 1992, 307 pp. | MR
[2] V. F. Babenko, “Approximations in the mean with constraints on the derivatives of approximating functions”, (in Russian), Questions in Analysis and Approximations, Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev, 1989, 9–18 | MR
[3] Dirong Chen, “Average n-widths and optimal recovery of Sobolev classes in $L_p(\mathbb R)$”, Chinese Ann. Math. Ser. B, 13:4 (1992), 396–405 | MR | Zbl
[4] R. A. DeVore, G. G. Lorentz, Constructive approximation, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 303, Springer-Verlag, Berlin, 1993, 449 pp. | DOI | MR | Zbl
[5] R. S. Ismagilov, “On n-dimensional diameters of compacts in a Hilbert space”, Funct. Anal. Its. Appl., 2:2 (1968), 125–132 | DOI | MR | Zbl
[6] Yanjie Jiang, Widths and optimal recovery of smooth function classes, PhD thesis, Beijing Normal University, 1998
[7] V. N. Konovalov, “Estimates of Kolmogorov-type widths for classes of differentiable periodic functions”, Math. Notes, 35:3 (1984), 193–199 | DOI | MR | Zbl
[8] V. N. Konovalov, “Approximation of Sobolev classes by their finite-dimensional sections”, Math. Notes, 72:3 (2002), 337–349 | DOI | MR | Zbl
[9] V. N. Konovalov, “Approximation of Sobolev classes by their sections of finite dimension”, Ukraine Math. J., 54:5 (2002), 795–805 | DOI | MR | Zbl
[10] N. P. Korneichuk, Ekstremal'nye zadachi teorii priblizheniya[Extremal problems of approximation theory], Nauka Publ., Moscow, 1976, 320 pp. | MR
[11] N. P. Korneichuk, Exact constants in approximation theory, Encyclopedia Math. Appl., 38, Cambridge University Press, Cambridge, 1991, 466 pp. | MR | Zbl
[12] Bo Ling, Yongping Liu, “Best restriction approximation of Sobolev classes by entire functions of exponential type”, Acta Mathematica Sinica, Chinese Series, 60:3 (2017), 389–400 | MR | Zbl
[13] Yongping Liu, Infinite dimensional widths and optimal recovery on the $S - W$ spaces, PhD thesis, Beijing Normal University, 1993
[14] Yongping Liu, Weiwei Xiao, “Relative average widths of Sobolev spaces in $L_2(\mathbb R^d)$”, Anal. Math., 34:1 (2008), 71–82 | DOI | MR | Zbl
[15] G. G. Lorentz, M. V. Golitschek, Y. Makovoz, Constructive approximation. Advanced problems, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 304, Springer-Verlag, Berlin, 1996, 649 pp. | DOI | MR | Zbl
[16] G. G. Magaril-Il'yaev, “$\varphi$-mean diameters of classes of functions on the line”, Russian Math. Surv., 45:2 (1990), 218–219 | DOI | MR | Zbl
[17] G. G. Magaril-Il'yaev, “Mean dimension, widths, and optimal recovery of Sobolev classes of functions on the line”, Math. USSR-Sb., 74:2 (1993), 381–403 | DOI | MR | Zbl
[18] G. G. Magaril-Il'yaev, V. M. Tikhomirov, “Average dimension and $\nu$-widths of classes of functions on the whole line”, J. Complexity, 8:1 (1992), 64–71 | DOI | MR | Zbl
[19] S. M. Nikol'skii, Approximation of functions of several variables and embedding theorems, Springer-Verlag, Berlin; N Y, 1975, 420 pp. | MR
[20] Heping Wang, Approximation and quadrature formula on function classes with mixed smoothness, PhD thesis, Beijing Normal University, 1996 | Zbl
[21] Yongsheng Sun, Yongping Liu, Dirong Chen, “Extremal problems in approximation theory for some classes of smooth functions defined on $\mathbb R^d$”, J. Beijing Normal University (Natural Sciences), 35(supp.) (1999), 79–144
[22] V. M. Tikhomirov, “Some remarks on relative diameters”, Approximation and function spaces, Proc. 27th Semest. (Warsaw/Pol. 1986), v. 22, Banach Cent. Publ., 1989, 471–474 | MR | Zbl
[23] V. M. Tikhomirov, “On approximation properties of smooth functions”, (in Russian), Proc. Conf. on Differential Equations and Numerical Mathematics, Nauka Publ., Novosibirsk, 1980, 183–188
[24] Guiqiao Xu, Widths and optimal recovery of multivariate smooth functions, PhD thesis, Beijing Normal University, 2001 | Zbl
[25] Wei Yang, Relative widths of differentiable function classes and convolution classes with $2\pi$ periodic in one variable case and hexagonal periodic in 2-dimensional case, PhD thesis, Beijing Normal University, 2009