Relaxation of the Pursuit–Evasion Differential Game and Iterative Methods
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 246-269
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A variant of the program iteration method called stability iterations is used for a differential game of pursuit–evasion. The successful solvability set of one of the problems generating the game is found as a limit of the iterative procedure in the space of sets whose elements are positions of the game. The game is defined by a pair of closed sets, one of the which is the target set in the pursuit problem (the first player's problem) and the other specifies the state constraints in this problem. For the positions not belonging to the solvability set of the pursuit problem, it is interesting to determine the smallest “size” of a neighborhood of the two mentioned sets for which the first player can implement the guidance to the neighborhood of the target set corresponding to this “size” within the similar neighborhood of the second set, i.e., the set specifying the state constraints. Similar constructions are considered for the sets realized at each stage of the iterative procedure. We use the connection of these constructions with the mentioned smallest “size” of neighborhoods of the sets that are parameters of the differential game in the sense of guaranteed realizability of guidance under the replacement of the original sets by these neighborhoods.
Keywords: differential game of pursuit–evasion, program iteration method, guaranteed guidance.
@article{TIMM_2018_24_4_a20,
     author = {A. G. Chentsov and D. M. Khachai},
     title = {Relaxation of the {Pursuit{\textendash}Evasion} {Differential} {Game} and {Iterative} {Methods}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {246--269},
     year = {2018},
     volume = {24},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a20/}
}
TY  - JOUR
AU  - A. G. Chentsov
AU  - D. M. Khachai
TI  - Relaxation of the Pursuit–Evasion Differential Game and Iterative Methods
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 246
EP  - 269
VL  - 24
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a20/
LA  - ru
ID  - TIMM_2018_24_4_a20
ER  - 
%0 Journal Article
%A A. G. Chentsov
%A D. M. Khachai
%T Relaxation of the Pursuit–Evasion Differential Game and Iterative Methods
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 246-269
%V 24
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a20/
%G ru
%F TIMM_2018_24_4_a20
A. G. Chentsov; D. M. Khachai. Relaxation of the Pursuit–Evasion Differential Game and Iterative Methods. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 246-269. http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a20/

[1] Krasovskii N. N., Subbotin A. I., “Alternativa dlya igrovoi zadachi sblizheniya”, Prikl. matematika i mekhanika, 34:6 (1970), 1005–1022

[2] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp.

[3] Isaacs R., Differential games, Wiley, N Y, 1965, 384 pp. | Zbl

[4] Berkovitz L. D., “Differential games of generalized pursuit and evasion”, Appl. Math. Optim., 17:1 (1988), 177–183 | DOI | MR | Zbl

[5] Elliott R. J., Kalton N. J., “Values in differential games”, Bull. Amer. Math. Soc., 78:3 (1972), 427–431 | DOI | MR | Zbl

[6] Chentsov A. G., “K igrovoi zadache navedeniya s informatsionnoi pamyatyu”, Dokl. AN, 227:2 (1976), 306–309 | MR

[7] Chentsov A. G., “Ob igrovoi zadache sblizheniya v zadannyi moment vremeni”, Mat. sb., 99(141):3 (1976), 394–420 | MR | Zbl

[8] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1977, 287 pp.

[9] Ushakov V. N., Ershov A. A., “K resheniyu zadach upravleniya s fiksirovannym momentom okonchaniya”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyut. nauki, 26:4 (2016), 543–564 | DOI | MR | Zbl

[10] Ushakov V. N., Matviichuk A. R., “K resheniyu zadach upravleniya nelineinymi sistemami na konechnom promezhutke vremeni”, Izv. IMI UdGU, 2015, no. 2 (46), 202–215 | Zbl

[11] Ushakov V. N., Ukhobotov V. I., Ushakov A. V., Parshikov G. V., “K resheniyu zadach o sblizhenii upravlyaemykh sistem”, Optimalnoe upravlenie, Tr. MIAN, 291, K 105-letiyu so dnya rozhdeniya akademika Lva Semenovicha Pontryagina, 2015, 276–291 | Zbl

[12] Krasovskii N. N., “Differentsialnaya igra sblizheniya-ukloneniya, I”, Izv. AN. Tekhn. kibernetika, 1973, no. 2, 3–18

[13] Krasovskii N. N., “Differentsialnaya igra sblizheniya-ukloneniya, II”, Izv. AN. Tekhn. kibernetika, 1973, no. 3, 22–42

[14] Chentsov A. G., “O strukture odnoi igrovoi zadachi sblizheniya”, Dokl. AN, 224:6 (1975), 1272–1275 | MR | Zbl

[15] Chistyakov S. V., “K resheniyu igrovykh zadach presledovaniya”, Prikl. matematika i mekhanika, 41:5 (1977), 825–832 | MR

[16] Ukhobotov V. I., “Postroenie stabilnogo mosta dlya odnogo klassa lineinykh igr”, Prikl. matematika i mekhanika, 41:2 (1977), 358–364 | MR

[17] Chentsov A. G., “Metod programmnykh iteratsii dlya differentsialnoi igry sblizheniya-ukloneniya”, Dep. v VINITI, 1979, 1933-79, Uralskii politekhnicheskii institut im. S. M. Kirova, Sverdlovsk, 103 pp.

[18] Chentsov A. G., “Iteratsii stabilnosti i zadacha ukloneniya s ogranicheniem na chislo pereklyuchenii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 23:2 (2017), 285–302 | DOI | MR

[19] Chentsov A. G., “O zadache upravleniya s ogranichennym chislom pereklyuchenii”, Dep. v VINITI, 1987, 4942-B87, Uralskii politekhnicheskii institut im. S. M. Kirova, Sverdlovsk, 44 pp.

[20] Chentsov A. G., “O differentsialnykh igrakh s ogranicheniem na chislo korrektsii, 2”, Dep. v VINITI, 1980, 5406-80, In-t matematiki i mekhaniki UNTs AN SSSR, Sverdlovsk, 55 pp.

[21] Neve Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969, 309 pp.

[22] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 352 pp.

[23] Dedonne Zh., Osnovy sovremennogo analiza, Mir, M., 1964, 430 pp.

[24] Kryazhimskii A. V., “K teorii pozitsionnykh differentsialnykh igr sblizheniya-ukloneniya”, Dokl. AN, 239:4 (1978), 779–782 | MR

[25] Chentsov A. G., “The program iteration method in a game problem of guidance”, Proc. Steklov Inst. Math., 297, suppl. 1, 2017, 43–61 | DOI | MR

[26] Chentsov A. G., “Ob igrovoi zadache sblizheniya k zadannomu momentu vremeni”, Izv. AN SSSR. Ser. matematicheskaya, 42:2 (1978), 455–467 | MR | Zbl

[27] Chistyakov S. V., Nikitin F.F., “Ob antagonisticheskikh differentsialnykh igrakh s neogranichennoi prodolzhitelnostyu”, Vest. SPbGU Ser.1, 2004, no. 3, 38–44 | MR | Zbl

[28] Chistyakov S. V., “Programmnye iteratsii i universalnye epsilon-optimalnye strategii v pozitsionnoi differentsialnoi igre”, Dokl. AN, 319:6 (1991), 1333–1335 | Zbl

[29] Chistyakov S. V., “O funktsionalnykh uravneniyakh v igrakh sblizheniya v zadannyi moment vremeni”, Prikl. matematika i mekhanika, 46:5 (1982), 874–877 | MR | Zbl

[30] Chentsov A. G., “Iteratsii stabilnosti i zadacha ukloneniya s ogranicheniem na chislo pereklyuchenii formiruemogo upravleniya”, Izv. IMI UdGU, 49 (2017), 17–54 | Zbl