Voir la notice du chapitre de livre
@article{TIMM_2018_24_4_a16,
author = {L. D. Popov},
title = {Interior {Point} {Methods} {Adapted} to {Improper} {Linear} {Programs}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {208--216},
year = {2018},
volume = {24},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a16/}
}
L. D. Popov. Interior Point Methods Adapted to Improper Linear Programs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 208-216. http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a16/
[1] Roos C., Terlaky T., Vial J.-Ph., Theory and algorithms for linear optimization, John Wiley Sons Ltd, Chichester, 1997, 484 pp. | MR
[2] Eremin I.I., Theory of linear optimization. Inverse and ill-posed problems series, VSP, Utrecht; Boston; Koln; Tokyo, 2002, 248 pp. | MR
[3] Eremin I.I., Mazurov Vl.D., Astafev N.N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983, 336 pp.
[4] Tikhonov A.N., Arsenin V.Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 285 pp.
[5] Vasilev F.P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981, 400 pp.
[6] Eremin I.I., Astafev N.N., Vvedenie v teoriyu lineinogo i vypuklogo programmirovaniya, Nauka, M., 1976, 192 pp.
[7] Popov L.D., “Use of barrier functions for optimal correction of improper problems of linear programming of the 1st kind”, Automation and Remote Control, 73:3 (2012), 417–424 | DOI | MR | Zbl
[8] Popov L. D., “Dual approach to the application of barrier functions for the optimal correction of improper linear programming problems of the first kind”, Proc. Steklov Inst. Math., 288, suppl. 1, 2015, 173–179 | DOI | MR