Interior Point Methods Adapted to Improper Linear Programs
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 208-216
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For linear programs, we consider schemes for the formation of a generalized central path, which arise under the simultaneous use of interior and exterior penalty terms in the traditional Lagrange function and the minimax problems generated by it. The advantage of the new schemes is that they do not require a priori knowledge of feasible interior points in the primal or dual problem. Moreover, when applied to problems with inconsistent constraints, the schemes automatically lead to some of their generalized solutions, which have an important applied content. Descriptions of the algorithms, their justification, and results of numerical experiments are presented.
Keywords: linear programming, duality, penalty function methods, regularization methods, improper problems, central path.
@article{TIMM_2018_24_4_a16,
     author = {L. D. Popov},
     title = {Interior {Point} {Methods} {Adapted} to {Improper} {Linear} {Programs}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {208--216},
     year = {2018},
     volume = {24},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a16/}
}
TY  - JOUR
AU  - L. D. Popov
TI  - Interior Point Methods Adapted to Improper Linear Programs
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 208
EP  - 216
VL  - 24
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a16/
LA  - ru
ID  - TIMM_2018_24_4_a16
ER  - 
%0 Journal Article
%A L. D. Popov
%T Interior Point Methods Adapted to Improper Linear Programs
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 208-216
%V 24
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a16/
%G ru
%F TIMM_2018_24_4_a16
L. D. Popov. Interior Point Methods Adapted to Improper Linear Programs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 208-216. http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a16/

[1] Roos C., Terlaky T., Vial J.-Ph., Theory and algorithms for linear optimization, John Wiley Sons Ltd, Chichester, 1997, 484 pp. | MR

[2] Eremin I.I., Theory of linear optimization. Inverse and ill-posed problems series, VSP, Utrecht; Boston; Koln; Tokyo, 2002, 248 pp. | MR

[3] Eremin I.I., Mazurov Vl.D., Astafev N.N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983, 336 pp.

[4] Tikhonov A.N., Arsenin V.Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 285 pp.

[5] Vasilev F.P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981, 400 pp.

[6] Eremin I.I., Astafev N.N., Vvedenie v teoriyu lineinogo i vypuklogo programmirovaniya, Nauka, M., 1976, 192 pp.

[7] Popov L.D., “Use of barrier functions for optimal correction of improper problems of linear programming of the 1st kind”, Automation and Remote Control, 73:3 (2012), 417–424 | DOI | MR | Zbl

[8] Popov L. D., “Dual approach to the application of barrier functions for the optimal correction of improper linear programming problems of the first kind”, Proc. Steklov Inst. Math., 288, suppl. 1, 2015, 173–179 | DOI | MR