Interior Point Methods Adapted to Improper Linear Programs
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 208-216

Voir la notice de l'article provenant de la source Math-Net.Ru

For linear programs, we consider schemes for the formation of a generalized central path, which arise under the simultaneous use of interior and exterior penalty terms in the traditional Lagrange function and the minimax problems generated by it. The advantage of the new schemes is that they do not require a priori knowledge of feasible interior points in the primal or dual problem. Moreover, when applied to problems with inconsistent constraints, the schemes automatically lead to some of their generalized solutions, which have an important applied content. Descriptions of the algorithms, their justification, and results of numerical experiments are presented.
Keywords: linear programming, duality, penalty function methods, regularization methods, improper problems, central path.
@article{TIMM_2018_24_4_a16,
     author = {L. D. Popov},
     title = {Interior {Point} {Methods} {Adapted} to {Improper} {Linear} {Programs}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {208--216},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a16/}
}
TY  - JOUR
AU  - L. D. Popov
TI  - Interior Point Methods Adapted to Improper Linear Programs
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 208
EP  - 216
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a16/
LA  - ru
ID  - TIMM_2018_24_4_a16
ER  - 
%0 Journal Article
%A L. D. Popov
%T Interior Point Methods Adapted to Improper Linear Programs
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 208-216
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a16/
%G ru
%F TIMM_2018_24_4_a16
L. D. Popov. Interior Point Methods Adapted to Improper Linear Programs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 208-216. http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a16/