Voir la notice du chapitre de livre
Mots-clés : conjugate polynomial
@article{TIMM_2018_24_4_a15,
author = {A. O. Leont'eva},
title = {Bernstein{\textendash}Szeg\H{o} {Inequality} for the {Weyl} {Derivative} of {Trigonometric} {Polynomials~in~}$L_0$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {199--207},
year = {2018},
volume = {24},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a15/}
}
TY - JOUR AU - A. O. Leont'eva TI - Bernstein–Szegő Inequality for the Weyl Derivative of Trigonometric Polynomials in $L_0$ JO - Trudy Instituta matematiki i mehaniki PY - 2018 SP - 199 EP - 207 VL - 24 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a15/ LA - ru ID - TIMM_2018_24_4_a15 ER -
A. O. Leont'eva. Bernstein–Szegő Inequality for the Weyl Derivative of Trigonometric Polynomials in $L_0$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 199-207. http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a15/
[1] Weyl H., “Bemerkungen zum Begriff des Differentialquotienten gebrochener Ordnung”, Vierteljahrcsschrift der Naturforschenden Gesellschaft in Zurich, 62:1–2 (1917), 296–302 | MR | Zbl
[2] Samko S.G., Kilbas A.A., Marichev O.I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 638 pp.
[3] Arestov V.V., Glazyrina P.Yu., “Bernstein-Szego inequality for fractional derivatives of trigonometric polynomials”, Proc. Steklov Inst. Math., 288, Suppl. 1, 2015, 13–28 | DOI | MR
[4] Szegö G., “Über einen Satz des Herrn Serge Bernstein”, Schrift. Königsberg. Gelehrten Gesellschaft, 5:4 (1928), 59–70 | Zbl
[5] Zigmund A., Trigonometricheskie ryady, v 2 t., v. 1, Mir, M., 1965, 616 pp. ; т. 2, 538 с. | MR
[6] Kozko A.I., “The exact constants in the Bernstein-Zygmund-Szegö inequalities with fractional derivatives and the Jackson-Nikolskii inequality for trigonometric polynomials”, East J. Approx, 4:3 (1998), 391–416 | MR | Zbl
[7] Arestov V.V., “Neravenstvo Sege dlya proizvodnykh sopryazhennogo trigonometricheskogo polinoma v $L_0$”, Mat. zametki, 56:6 (1994), 10–26 | Zbl
[8] Arestov V.V., “O neravenstvakh S. N. Bernshteina dlya algebraicheskikh i trigonometricheskikh polinomov”, Dokl. AN SSSR, 246:6 (1979), 1289–1292 | MR | Zbl
[9] Arestov V.V., “Ob integralnykh neravenstvakh dlya trigonometricheskikh polinomov i ikh proizvodnykh”, Izv. AN SSSR. Ser. matematicheskaya, 45:1 (1981), 3–22
[10] Adamov A.N., “O konstante v neravenstve Sege dlya proizvodnykh sopryazhennykh trigonometricheskikh polinomov v $L_0$”, Vestnik Od. nats. un-ta. Matematiki i mekhanika, 19:1(21) (2014), 7–15
[11] Leonteva A.O., “Neravenstvo Bernshteina dlya proizvodnykh Veilya trigonometricheskikh polinomov v prostranstve $L_0$”, Mat. zametki, 104:2 (2018), 255–264 | DOI | MR | Zbl
[12] Arestov V.V., “Integralnye neravenstva dlya algebraicheskikh mnogochlenov na edinichnoi okruzhnosti”, Mat. zametki, 48:4 (1990), 7–18
[13] Polia G., Sege G., Zadachi i teoremy iz analiza, v 2 t., v. 1, Nauka, M., 1978, 391 pp.
[14] Popov N.V., “O neravenstve S. N. Bernshteina”, Sovremennye problemy teorii funktsii i ikh prilozheniya, materialy 19 Mezhdunar. Saratovskoi zimnei shk., posvyaschennoi 90-letiyu so dnya rozhdeniya akad. P. L. Ulyanova, OOO Izd-vo “Nauchnaya kniga”, Saratov, 2018, 380 pp.