On the Complexity of Some Max--Min Clustering Problems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 189-198
Voir la notice de l'article provenant de la source Math-Net.Ru
Two similar problems of searching for a family of disjoint subsets
(clusters) in a finite set of points in Euclidean space are considered. In these
problems, the size of the smallest cluster should be maximized so that in each
cluster the intracluster quadratic variation of the points with respect to the
center of the cluster would not exceed a given (constant) fraction of the total quadratic
variation of the points of the input set with respect to its centroid.
In the first problem, the centers of intracluster variations are arbitrary
points of the space given at the input. In the second problem, the centers of
the intracluster variation are unknown (to be found) but must lie in the
input set. Both problems are proved to be NP-hard even on the real line
both in the general case when the number of the clusters is a part of the input
and in the parametric case when the number of the clusters is fixed.
Keywords:
Euclidean space, clustering, max–min problem, quadratic variation, NP-hardness.
@article{TIMM_2018_24_4_a14,
author = {A. V. Kel'manov and A. V. Pyatkin and V. I. Khandeev},
title = {On the {Complexity} of {Some} {Max--Min} {Clustering} {Problems}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {189--198},
publisher = {mathdoc},
volume = {24},
number = {4},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a14/}
}
TY - JOUR AU - A. V. Kel'manov AU - A. V. Pyatkin AU - V. I. Khandeev TI - On the Complexity of Some Max--Min Clustering Problems JO - Trudy Instituta matematiki i mehaniki PY - 2018 SP - 189 EP - 198 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a14/ LA - ru ID - TIMM_2018_24_4_a14 ER -
A. V. Kel'manov; A. V. Pyatkin; V. I. Khandeev. On the Complexity of Some Max--Min Clustering Problems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 189-198. http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a14/