Pointwise Turán problem for periodic positive definite functions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 156-175
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the pointwise Turán problem on the largest value at an arbitrary point $x$ of a $1$-periodic positive definite function supported on the interval $[-h, h]$ and equal to $1$ at zero. For rational values of $x$ and $h$, the problem reduces to a discrete version of the Fejér problem on the largest value of the $\nu$th coefficient of an even trigonometric polynomial of order $p-1$ that has zero coefficient 1 and is nonnegative on a uniform grid $k/q$, $k=0,\dots,q-1$. The discrete Fejér problem is solved for a number of values of the parameters $\nu$, $p$, and $q$. In all the cases, we construct extremal polynomials and quadrature formulas, which yield an estimate for the largest coefficient.
Mots-clés : Fourier transform and series, quadrature formula
Keywords: periodic positive definite function, pointwise Turán problem, extremal polynomial.
@article{TIMM_2018_24_4_a12,
     author = {V. I. Ivanov},
     title = {Pointwise {Tur\'an} problem for periodic positive definite functions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {156--175},
     year = {2018},
     volume = {24},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a12/}
}
TY  - JOUR
AU  - V. I. Ivanov
TI  - Pointwise Turán problem for periodic positive definite functions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 156
EP  - 175
VL  - 24
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a12/
LA  - ru
ID  - TIMM_2018_24_4_a12
ER  - 
%0 Journal Article
%A V. I. Ivanov
%T Pointwise Turán problem for periodic positive definite functions
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 156-175
%V 24
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a12/
%G ru
%F TIMM_2018_24_4_a12
V. I. Ivanov. Pointwise Turán problem for periodic positive definite functions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 156-175. http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a12/

[1] Rudin W., Fourier analysis on groups, Inter-science Publishers Inc., N Y, 1962, 285 pp. | MR | Zbl

[2] Siegel C.L., “Über Gitterpunkte in Konvexen Körpern und damit zusammenhängendes Extremalproblem”, Acta Math., 65:1 (1935), 307–323 | DOI | MR

[3] Boas R. P., Kac M., “Inequalities for Fourier transforms for positive function”, Duke Math. J., 12:1 (1945), 189–206 | DOI | MR | Zbl

[4] Gorbachev D. V., “Extremum problem for periodic functions supported in a ball”, Math. Notes, 69:3 (2001), 313–319 | DOI | MR | Zbl

[5] Arestov V. V., Berdysheva E. E., “The Turan problem for a class of polytopes”, East J. Math., 8:3 (2002), 381–388 | MR | Zbl

[6] Kolountzakis M. N., Rev$\acute{\mathrm{e}}$sz Sz. Gy., “On a problem of Turán about positive definite functions”, Proc. Amer. Math. Soc., 131 (2003), 3423–3430 | DOI | MR | Zbl

[7] Stechkin S. B., “Odna ekstremalnaya zadacha dlya ekstremalnykh ryadov s neotritsatelnymi koeffitsientami”, Acta Math. Scient. Hungar., 23:3–4 (1972), 289–291 | DOI | Zbl

[8] Gorbachev D. V., Manoshina A. S., “Turán extremal problem for periodic functions with small support and its applications”, Math. Notes, 76:5 (2004), 640–652 | DOI | MR | Zbl

[9] Fejér L., “Über trigonometrische Polynome”, J. Reine Angew, 146 (1916), 53–82 | MR

[10] Ivanov V. I., Rudomazina Yu. D., “On the Turan problem for periodic functions with nonnegative Fourier coefficients and small support”, Math. Notes, 77:6 (2005), 870–875 | DOI | MR | Zbl

[11] Ivanov V. I., Gorbachev D. V., Rudomazina Yu. D., “Some extremal problems for periodic functions with conditions on there values and Fourier coefficients”, Proc. Steklov Math. Institute, Suppl. 2, 2005, S139–S159 | MR | Zbl

[12] Ivanov V. I., Rudomazina Yu. D., “Nekotorye ekstremalnye zadachi dlya periodicheskikh polozhitelno opredelennykh funktsii”, Mat. voprosy kibernetiki, 2008, no. 17, 169–224

[13] Ivanov V. I., Ivanov A. V., “Turán problems for periodic positive definite functions”, Annales Univ. Sci. Budapest, Sect. Comp., 33 (2010), 219–237 | MR | Zbl

[14] Ivanov V. I., “On the Turan and Delsarte problems for periodic positive definite functions”, Math. Notes, 80:6 (2006), 875–880 | DOI | MR | Zbl

[15] Belov A. S., “On positive definite piecewise linear functions and their applications”, Proc. Steklov Math. Institute, 280, no. 1, 2013, 5–33 | DOI | MR | Zbl

[16] Kolountzakis M. N., Revész Sz. Gy., “On pointwise estimates of positive definite functions with given support”, Canad. J. Math., 58:2 (2006), 401–418 | DOI | MR | Zbl

[17] Szegö G., “Koeffizientenabschätzungen bei ebenen und räumlichen harmonischen Entwicklungen”, Math. Ann., 96 (1926/27), 601–632 | DOI | MR

[18] Egerváry E., Szász O., “Einige Extremalprobleme im Bereiche der trigonometrischen Polynome”, Math. Z., 27 (1928), 641–692 | DOI | MR

[19] Arestov V. V., Berdysheva E. E., Berens H., “On pointwise Turán's problem for positive definite functions”, East J. on Approx., 9:1 (2003), 31–42 | MR | Zbl

[20] Gradshteyn I. S., Ryzhik I. M., Table of integrals, series, and products, Elsevier, Acad. Press, N Y; London; Oxford, 2007, 1172 pp. | MR | Zbl