Voir la notice du chapitre de livre
Mots-clés : graph automorphism.
@article{TIMM_2018_24_4_a11,
author = {N. D. Zyulyarkina and M. Kh. Shermetova},
title = {Large vertex-symmetric {Higman} graphs with $\mu=6$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {146--155},
year = {2018},
volume = {24},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a11/}
}
N. D. Zyulyarkina; M. Kh. Shermetova. Large vertex-symmetric Higman graphs with $\mu=6$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 146-155. http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a11/
[1] Higman D.G., “Characterization of families of rank 3 permutation groups by the subdegrees, I”, Arch. Math., 21:1 (1970), 151–156 | DOI | MR | Zbl
[2] Zyulyarkina N.D., Makhnev A.A., “Reberno-simmetrichnye polutreugolnye grafy Khigmena”, Dokl. AN, 459:3 (2014), 261–265 | DOI | MR | Zbl
[3] N. D. Zyulyarkina, A. A. Makhnev, D. V. Paduchikh, Khamgokova M.M, “Vershinno tranzitivnye polutreugolnye grafy s $\mu=7$”, Sib. elektron. mat. izv., 14 (2017), 1198–1206 | DOI | MR | Zbl
[4] Zyulyarkina N.D., Makhnev A.A., “Nebolshie vershinno simmetrichnye grafy Khigmena s $\mu=6$”, Sib. elektron. mat. izv., 15 (2018), 54–59 | DOI | MR | Zbl
[5] Zyulyarkina N.D., Makhnev A.A., “Avtomorfizmy polutreugolnykh grafov, imeyuschikh $\mu=6$”, Dokl. AN, 426:4 (2009), 439–442 | MR | Zbl
[6] Cameron P., Permutation Groups, Cambridge Univ. Press, London, 1999, 220 pp. | MR | Zbl
[7] Behbahani M. , Lam C., “Strongly regular graphs with nontrivial automorphisms”, Discrete Math., 311:2–3 (2011), 132–144 | DOI | MR | Zbl
[8] Haemers W.H., “Interlacing eigenvalues and graphs”, Linear Algebra Appl., 226–228 (1995), 593–616 | DOI | MR | Zbl
[9] Macay M., Siran J., “Search for properties of the missing Moore graph”, Linear Algebra Appl., 432:9 (2010), 2381–2398 | DOI | MR
[10] Zavarnitsine A.V., “Finite simple groups with narrow prime spectrum”, Sibirean Electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl