Large vertex-symmetric Higman graphs with $\mu=6$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 146-155
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A strongly regular graph with $v={m\choose 2}$ and $k=2(m-2)$ is called a Higman graph. In such a graph, the parameter $\mu$ is 4, 6, 7, or 8. If $\mu=6$, then $m\in\{9,17,27,57\}$. Vertex-symmetric Higman graphs were classified by N.D. Zyulyarkina and A.A. Makhnev (all of these graphs turned out to have rank 3). A program of classification of vertex-symmetric Higman graphs is implemented. Earlier Zyulyarkina and Makhnev found vertex-symmetric Higman graphs with $\mu=6$ and $m\in\{9,17\}$. In the present paper, vertex-symmetric Higman graphs with $\mu=6$ and $m\in{27,57}$ are studied. It is interesting that the group $G/S(G)$ may contain two components $L$ and $M$. In the case $m=27$, we have $M\cong A_5,A_6$ and $L\cong L_3(3)$; in the case $m=57$, we have either $M\cong PSp_4(3)$ and $L\cong L_3(7)$ or $M\cong A_6$ and $L\cong J_1$.
Keywords: distance-regular graph
Mots-clés : graph automorphism.
@article{TIMM_2018_24_4_a11,
     author = {N. D. Zyulyarkina and M. Kh. Shermetova},
     title = {Large vertex-symmetric {Higman} graphs with $\mu=6$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {146--155},
     year = {2018},
     volume = {24},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a11/}
}
TY  - JOUR
AU  - N. D. Zyulyarkina
AU  - M. Kh. Shermetova
TI  - Large vertex-symmetric Higman graphs with $\mu=6$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 146
EP  - 155
VL  - 24
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a11/
LA  - ru
ID  - TIMM_2018_24_4_a11
ER  - 
%0 Journal Article
%A N. D. Zyulyarkina
%A M. Kh. Shermetova
%T Large vertex-symmetric Higman graphs with $\mu=6$
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 146-155
%V 24
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a11/
%G ru
%F TIMM_2018_24_4_a11
N. D. Zyulyarkina; M. Kh. Shermetova. Large vertex-symmetric Higman graphs with $\mu=6$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 146-155. http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a11/

[1] Higman D.G., “Characterization of families of rank 3 permutation groups by the subdegrees, I”, Arch. Math., 21:1 (1970), 151–156 | DOI | MR | Zbl

[2] Zyulyarkina N.D., Makhnev A.A., “Reberno-simmetrichnye polutreugolnye grafy Khigmena”, Dokl. AN, 459:3 (2014), 261–265 | DOI | MR | Zbl

[3] N. D. Zyulyarkina, A. A. Makhnev, D. V. Paduchikh, Khamgokova M.M, “Vershinno tranzitivnye polutreugolnye grafy s $\mu=7$”, Sib. elektron. mat. izv., 14 (2017), 1198–1206 | DOI | MR | Zbl

[4] Zyulyarkina N.D., Makhnev A.A., “Nebolshie vershinno simmetrichnye grafy Khigmena s $\mu=6$”, Sib. elektron. mat. izv., 15 (2018), 54–59 | DOI | MR | Zbl

[5] Zyulyarkina N.D., Makhnev A.A., “Avtomorfizmy polutreugolnykh grafov, imeyuschikh $\mu=6$”, Dokl. AN, 426:4 (2009), 439–442 | MR | Zbl

[6] Cameron P., Permutation Groups, Cambridge Univ. Press, London, 1999, 220 pp. | MR | Zbl

[7] Behbahani M. , Lam C., “Strongly regular graphs with nontrivial automorphisms”, Discrete Math., 311:2–3 (2011), 132–144 | DOI | MR | Zbl

[8] Haemers W.H., “Interlacing eigenvalues and graphs”, Linear Algebra Appl., 226–228 (1995), 593–616 | DOI | MR | Zbl

[9] Macay M., Siran J., “Search for properties of the missing Moore graph”, Linear Algebra Appl., 432:9 (2010), 2381–2398 | DOI | MR

[10] Zavarnitsine A.V., “Finite simple groups with narrow prime spectrum”, Sibirean Electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl