The Mal'tsev correspondence and isomorphisms of niltriangular subrings of Chevalley algebras
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 135-145

Voir la notice de l'article provenant de la source Math-Net.Ru

Models of algebraic systems of a first-order language are called elementarily equivalent (we write $\equiv$) if every sentence that is true in one of the models is also true in the other model. The model-theoretic study of linear groups and rings initiated by A.I. Mal'tsev (1960, 1961) is closely related to isomorphism theory; as a rule, the relation $\equiv$ of systems was transferred to fields (or rings encountered) of the coefficients. The Mal'tsev correspondence was analyzed for rings of niltriangular matrices and unitriangular groups (B. Rose, 1978; V. Weiler, 1980; K. Videla, 1988; O.V. Belegradek, 1999; V.M. Levchuk, E.V. Minakova, 2009). For unipotent subgroups of Chevalley groups over a field $K$, the correspondence was studied in 1990 by Videla for $char~ \, K\ne 2,3$. Earlier the authors announced a weakening of the constraint on the field $K$ in the Videla theorem. In the Chevalley algebra associated with a root system $\Phi$ and a ring $K$, the niltriangular subalgebra $N\Phi(K)$ is naturally distinguished. The main results of this paper establish the Mal'tsev correspondence (related with the description of isomorphisms) for the Lie rings $N\Phi(K)$ of classical types over arbitrary associative commutative rings with unity. A corollary is noted for (nonassociative) enveloping algebras to $N\Phi(K)$.
Keywords: Chevalley algebra, model-theoretic Mal'tsev correspondence.
Mots-clés : niltriangular subalgebra, isomorphism
@article{TIMM_2018_24_4_a10,
     author = {I. N. Zotov and V. M. Levchuk},
     title = {The {Mal'tsev} correspondence and isomorphisms of niltriangular subrings of {Chevalley} algebras},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {135--145},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a10/}
}
TY  - JOUR
AU  - I. N. Zotov
AU  - V. M. Levchuk
TI  - The Mal'tsev correspondence and isomorphisms of niltriangular subrings of Chevalley algebras
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 135
EP  - 145
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a10/
LA  - ru
ID  - TIMM_2018_24_4_a10
ER  - 
%0 Journal Article
%A I. N. Zotov
%A V. M. Levchuk
%T The Mal'tsev correspondence and isomorphisms of niltriangular subrings of Chevalley algebras
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 135-145
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a10/
%G ru
%F TIMM_2018_24_4_a10
I. N. Zotov; V. M. Levchuk. The Mal'tsev correspondence and isomorphisms of niltriangular subrings of Chevalley algebras. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 135-145. http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a10/