Optimal recovery of a function analytic in a half-plane from approximately given values on a part of the straight-line boundary
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 19-33
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\mathcal{H}^p(\Pi_+,\phi)$ be the class of functions analytic in the upper half-plane $\Pi_+$ and belonging to the universal Hardy class $N_*$ with boundary values from $L^p_\phi(\mathbb{R})$ with a weight $\phi$, and let $Q^p(\Pi_+,\mathbb{I},\phi)$ be the class of function $f\in \mathcal{H}^p(\Pi_+,\phi)$ such that $\|f\|_{L^p_\phi(\mathbb{R}\setminus\mathbb{I})}\le 1$, where $\mathbb{I}$ is a finite open interval or a half-line from $\mathbb{R}$ and $1\le p\le\infty.$ On the class $Q^p(\Pi_+,\mathbb{I},\phi)$, we consider the problem of optimal recovery of the value of a function at a point $z_0\in\Pi_+$ from its approximately given limit boundary values on $\mathbb{I}$ in the norm $L^p_\phi(\mathbb{I})$ and the related problem of the best approximation of a functional by linear bounded functionals. Explicit solutions of these problems are written: an extremal function, optimal recovery method, and best approximation functional. On the class $Q^p(\Pi_+,\mathbb{R}_+,\psi)$, $\psi(z)=1/|z|$, we solve the problem of optimal recovery of a function on a ray $\gamma=\{z\,:\,\arg z=\varphi_0\}$ with respect to the norm $L^p_\psi(\gamma)$ from its approximately given limit boundary values on $\mathbb{R}_+$ in the norm $L^p_\psi(\mathbb{R}_+)$ and the related problem of the best approximation of an operator by linear bounded operators. For $f\in\mathcal{H}^p(\Pi_+,\psi)$, we obtain the exact inequality $$ \|f\|_{L^p_{\psi}(\gamma)}\le \|f\|_{L^{p}_{\psi}(-\infty, 0)}^{{\varphi_0}/{\pi}}\, \|f\|_{L_{\psi}^{p}(0, +\infty)}^{1-{\varphi_0}/{\pi}}. $$
Keywords: optimal recovery of an operator, best approximation of an unbounded operator by bounded operators, analytic function.
@article{TIMM_2018_24_4_a1,
     author = {R. R. Akopyan},
     title = {Optimal recovery of a function analytic in a half-plane from approximately given values on a part of the straight-line boundary},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {19--33},
     year = {2018},
     volume = {24},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a1/}
}
TY  - JOUR
AU  - R. R. Akopyan
TI  - Optimal recovery of a function analytic in a half-plane from approximately given values on a part of the straight-line boundary
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 19
EP  - 33
VL  - 24
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a1/
LA  - ru
ID  - TIMM_2018_24_4_a1
ER  - 
%0 Journal Article
%A R. R. Akopyan
%T Optimal recovery of a function analytic in a half-plane from approximately given values on a part of the straight-line boundary
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 19-33
%V 24
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a1/
%G ru
%F TIMM_2018_24_4_a1
R. R. Akopyan. Optimal recovery of a function analytic in a half-plane from approximately given values on a part of the straight-line boundary. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 19-33. http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a1/

[1] Aizenberg L.A., Formuly Karlemana v kompleksnom analize. Pervye prilozheniya, Nauka, Novosibirsk, 1990, 248 pp. | MR

[2] Akopyan R.R., “Nailuchshee priblizhenie operatora analiticheskogo prodolzheniya na klasse analiticheskikh v polose funktsii”, Tr. IMM UrO RAN, 17:3 (2011), 46–54

[3] Akopyan R.R., “Optimalnoe vosstanovlenie analiticheskoi funktsii po zadannym s pogreshnostyu granichnym znacheniyam”, Mat. zametki, 99:2 (2016), 163–170 | DOI | MR | Zbl

[4] Akopyan R.R., “Nailuchshee priblizhenie funktsionala analiticheskogo prodolzheniya s chasti granitsy”, Sovremennye problemy teorii funktsii i ikh prilozheniya, materialy 18-i mezhdunar. Sarat. zimnei shk., OOO Izdatelstvo “Nauchnaya kniga”, Saratov, 2016, 25–26

[5] Akopyan R.R., “Optimal recovery of a derivative of an analytic function from values of the function given with an error on a part of the boundary”, Analysis Math., 44:1 (2018), 3–19 | DOI | MR | Zbl

[6] Arestov V.V., “O ravnomernoi regulyarizatsii zadachi vychisleniya znachenii operatora”, Mat. zametki, 22:2 (1977), 231–244 | MR | Zbl

[7] Arestov V.V., “Nailuchshee vosstanovlenie operatorov i rodstvennye zadachi”, Tr. MIAN, 189, 1989, 3–20

[8] Arestov V.V., “Priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye ekstremalnye zadachi”, Uspekhi mat. nauk, 51:6(312) (1996), 89–124 | DOI | MR | Zbl

[9] Arestov V., Filatova M., “Best approximation of the differentiation operator in the space $L_2$ on the semiaxis”, J. Approx. Theory, 187:l (2014), 65–81 | DOI | MR | Zbl

[10] Gonzalez-Vera P., Stessin M.I., “Joint spectra of Toeplitz operators and optimal recovery of analytic functions”, Constr. Approx., 36:1 (2012), 53–82 | DOI | MR | Zbl

[11] DeGraw A., “Optimal recovery of holomorphic functions from inaccurate information about radial integration”, Amer. J. Comput. Math., 2:4 (2012), 258–268 | DOI

[12] Lavrentev M.M., Romanov V.G., Shishatskii S.P., Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980, 286 pp. | MR

[13] Magaril-Ilyaev G.G., Osipenko K.Yu., “Ob optimalnom vosstanovlenii funktsionalov po netochnym dannym”, Mat. zametki, 50:6 (1991), 85–93

[14] Micchelli Ch.A., Rivlin Th.J., “A survey of optimal recovery”, Optimal estimation in approximation theory, Plenum Press, N.Y. etc., 1977, 1–54 | DOI | MR

[15] Magaril-Ilyaev G.G., Tikhomirov V.M., Osipenko K.Yu., “Neopredelennost znaniya ob ob'ekte i tochnost metodov ego vosstanovleniya”, Problemy peredachi informatsii, 39:1 (2003), 118–133 | MR | Zbl

[16] Osipenko K.Yu., Optimal recovery of analytic functions, NJVA Science Publ. Inc., Huntington, 2000, 229 pp.

[17] Osipenko K.Yu., “Neravenstvo Khardi - Littlvuda - Polia dlya analiticheskikh funktsii iz prostranstv Khardi - Soboleva”, Mat. sb., 197:3 (2006), 15–34 | DOI | MR | Zbl

[18] Osipenko K.Y., Stessin M.I., “Hadamard and Schwarz type theorems and optimal recovery in spaces of analytic functions”, Constr. Approx., 31 (2010), 37–67 | DOI | MR | Zbl

[19] Osipenko K.Yu., “Optimalnoe vosstanovlenie lineinykh operatorov v neevklidovykh metrikakh”, Mat. sb., 205:10 (2014), 77–106 | DOI | Zbl