An inequality of different metrics in the generalized Lorentz space
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 5-18 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The main goal of the paper is to prove the Jackson-Nikol'skii inequality for multiple trigonometric polynomials in the generalized Lorentz space $L_{\psi,\theta}(\mathbb{T}^{m})$. In the first section we give definitions of a symmetric space of functions, a fundamental function, and the Boyd index of a space. In particular, we define the generalized Lorentz and Lorentz-Zygmund spaces. In addition, definitions of a weakly varying function and of the Lorentz-Karamata space are given. In the second section we prove an analog of the inequality of different metrics for multiple trigonometric polynomials in generalized Lorentz spaces $L_{\psi,\theta}(\mathbb{T}^{m})$ with identical Boyd indices but different fundamental functions. In the Lorentz-Karamata space, the order-exact Jackson-Nikol'skii inequality for multiple trigonometric polynomials is obtained.
Mots-clés : Lorentz-Karamata space
Keywords: Jackson-Nikol'skii inequality, trigonometric polynomial.
@article{TIMM_2018_24_4_a0,
     author = {G. A. Akishev},
     title = {An inequality of different metrics in the generalized {Lorentz} space},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {5--18},
     year = {2018},
     volume = {24},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a0/}
}
TY  - JOUR
AU  - G. A. Akishev
TI  - An inequality of different metrics in the generalized Lorentz space
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 5
EP  - 18
VL  - 24
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a0/
LA  - ru
ID  - TIMM_2018_24_4_a0
ER  - 
%0 Journal Article
%A G. A. Akishev
%T An inequality of different metrics in the generalized Lorentz space
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 5-18
%V 24
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a0/
%G ru
%F TIMM_2018_24_4_a0
G. A. Akishev. An inequality of different metrics in the generalized Lorentz space. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 5-18. http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a0/

[1] Krein S.G., Petunin Yu.I., Semenov E.M., Interpolyatsiya lineinykh operatorov, Nauka, Moskva, 1978, 400 pp. | MR

[2] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, Moskva, 1974, 332 pp.

[3] Semenov E.M., “Interpolyatsiya lineinykh operatorov v simmetrichnykh prostranstvakh”, Dokl. AN, 164:4 (1965), 746–749 | Zbl

[4] Jackson D., “Certain problems of closest approximation”, Bull. Amer. Math. Soc., 39:12 (1933), 889–906 | DOI | MR

[5] Nikolskii S.M., “Neravenstva dlya tselykh funktsii konechnoi stepeni i ikh primenenie v teorii differentsiruemykh funktsii mnogikh peremennykh”, Tr. MIAN, 38, 1951, 244–278

[6] Bari N.K., “Obobschenie neravenstv S.N. Bernshteina i A.A. Markova”, Izv. AN. Cer. matematicheskaya, 18:2 (1954), 159–176 | Zbl

[7] Ivanov V.I., “Nekotorye neravenstva dlya trigonometricheskikh polinomov i ikh proizvodnykh v raznykh metrikakh”, Mat. zametki, 18:4 (1975), 489–498 | MR | Zbl

[8] Arestov V.V., “O neravenstve raznykh metrik dlya trigonometricheskikh polinomov”, Mat. zametki, 27:4 (1980), 539–547 | MR | Zbl

[9] Arestov V.V., Deikalova M.V., “Nikol'skii inequality for algebraic polynomials on a multidimensional Euclidean sphere”, Proc. Steklov Inst. Math., 284, suppl. 1, 2014, 9–23 | DOI | MR

[10] Temlyakov V.N., “Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi”, Tr. MIAN, 178, 1986, 1–112 | Zbl

[11] Rodin V.A., “Neravenstva Dzheksona i Nikolskogo dlya trigonometricheskikh polinomov v simmetrichnom prostranstve”, Tr. VII zimnei shkoly Drogobych (1974), Moskva, 1976, 133–140

[12] Smailov E.S., “O vliyanii geometricheskikh svoistv spektra mnogochlena na neravenstva raznykh metrik S.M. Nikolskogo”, Sib. mat. zhurn., 39:5 (1998), 1158–1163

[13] Nursultanov E.D., “Neravenstva raznykh metrik S.M. Nikolskogo i svoistva posledovatelnosti norm summ Fure funktsii iz prostranstva Lorentsa”, Tr. MIAN, 255, 2006, 1–18

[14] Gogatishvili A., Opic B., Tikhonov S., Trebels W., “Ulyanov-type inequalities between Lorentz-Zygmund spaces”, J. Fourier Anal. Appl., 20:5 (2014), 1020–1049 | DOI | MR | Zbl

[15] Sherstneva L.A., “Neravenstva Nikolskogo dlya trigonometricheskikh polinomov v prostranstvakh Lorentsa”, Vest. MGU, 1984, no. 4, 75–79 | MR | Zbl

[16] Shvelidze N.V., “O teoremakh vlozheniya v nekotorykh funktsionalnykh prostranstvakh”, Soobscheniya AN Gruz. SSR, 83:2 (1976), 290–292

[17] Akishev G., “O poryadkakh $M$-chlennykh priblizhenii klassov funktsii simmetrichnogo prostranstva”, Mat. zhurn., 14:4 (2014), 46–71 | Zbl

[18] Sherstneva L.A., “O svoistvakh nailuchshikh priblizhenii Lorentsa i nekotorye teoremy vlozheniya”, Izv. vuzov. Matematika, 10 (1987), 48–58 | MR | Zbl

[19] Sharpley R., “Space $\Lambda_{\alpha}(X)$ and interpolation”, J. Func. Anal., 11:4 (1972), 479–513 | DOI | MR | Zbl

[20] Bennet C., Rudnik K., On Lorentz-Zygmund spaces, Disser. Math., 175, Warszawa, 1979, 66 pp. | MR

[21] Edmunds D.E., Evans W.D., Hardy operators, function spaces and embedding, Springer-Verlag, Berlin; Heidelberg, 2004, 328 pp. | MR

[22] Neves J.S., Lorentz-Karamata spaces, Bessel and Riesz potential and embeddings, Disser. Math., 405, 2002, 46 pp. | DOI | MR

[23] Rodin V.A., “Teorema Khardi-Littlvuda dlya kosinus-ryada v simmetrichnom prostranstve”, Mat. zametki, 20:2 (1976), 241–246 | MR | Zbl

[24] Komissarov A.A., “O nekotorykh svoistvakh funktsionalnykh sistem”, Dep. VINITI, Moskva, 1983, 5827-83Dep, 28 pp.

[25] Ditzian Z., Prymak A., “Nikol'skii inequalities for Lorentz spaces”, Rocky Mountain J. Math., 40:1 (2010), 209–223 | DOI | MR | Zbl

[26] Sabziev N.M., “Nekotorye ekstremalnye svoistva funktsii iz klassa $L_{p}$”, Dep. VINITI, Baku, 1982, 5252-82Dep, 12 pp.