An inequality of different metrics in the generalized Lorentz space
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 5-18
Voir la notice de l'article provenant de la source Math-Net.Ru
The main goal of the paper is to prove the Jackson-Nikol'skii inequality for multiple trigonometric polynomials in the generalized Lorentz space $L_{\psi,\theta}(\mathbb{T}^{m})$. In the first section we give definitions of a symmetric space of functions, a fundamental function, and the Boyd index of a space. In particular, we define the generalized Lorentz and Lorentz-Zygmund spaces. In addition, definitions of a weakly varying function and of the Lorentz-Karamata space are given. In the second section we prove an analog of the inequality of different metrics for multiple trigonometric polynomials in generalized Lorentz spaces $L_{\psi,\theta}(\mathbb{T}^{m})$ with identical Boyd indices but different fundamental functions. In the Lorentz-Karamata space, the order-exact Jackson-Nikol'skii inequality for multiple trigonometric polynomials is obtained.
Mots-clés :
Lorentz-Karamata space
Keywords: Jackson-Nikol'skii inequality, trigonometric polynomial.
Keywords: Jackson-Nikol'skii inequality, trigonometric polynomial.
@article{TIMM_2018_24_4_a0,
author = {G. A. Akishev},
title = {An inequality of different metrics in the generalized {Lorentz} space},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {5--18},
publisher = {mathdoc},
volume = {24},
number = {4},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a0/}
}
G. A. Akishev. An inequality of different metrics in the generalized Lorentz space. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 5-18. http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a0/