On a vertex-symmetric graph with intersection array 205, 136, 1; 1, 68, 205
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 91-97 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A. Makhnev and D. Paduchikh found intersection arrays of distance-regular graphs that are locally strongly regular with the second eigenvalue 3. A. Makhnev and M. Samoilenko added to this list the intersection arrays {196, 76, 1; 1, 19, 196} and {205, 136, 1; 1, 68, 205}. However, graphs with these intersection arrays cannot be locally strongly regular. The existence of graphs with these intersection arrays is unknown. We find possible orders and fixed-point subgraphs for the elements of the automorphism group of a distance-regular graph with intersection array {205, 136, 1; 1, 68, 205}. It is proved that a vertex-transitive distance-regular graph with this intersection array is a Cayley graph.
Keywords: distance-regular graph
Mots-clés : automorphism.
@article{TIMM_2018_24_3_a9,
     author = {A. M. Kagazezheva},
     title = {On a vertex-symmetric graph with intersection array 205, 136, 1; 1, 68, 205},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {91--97},
     year = {2018},
     volume = {24},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a9/}
}
TY  - JOUR
AU  - A. M. Kagazezheva
TI  - On a vertex-symmetric graph with intersection array 205, 136, 1; 1, 68, 205
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 91
EP  - 97
VL  - 24
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a9/
LA  - ru
ID  - TIMM_2018_24_3_a9
ER  - 
%0 Journal Article
%A A. M. Kagazezheva
%T On a vertex-symmetric graph with intersection array 205, 136, 1; 1, 68, 205
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 91-97
%V 24
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a9/
%G ru
%F TIMM_2018_24_3_a9
A. M. Kagazezheva. On a vertex-symmetric graph with intersection array 205, 136, 1; 1, 68, 205. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 91-97. http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a9/

[1] Kardanova M.L., Makhnev A.A., “O grafakh, v kotorykh okrestnosti vershin yavlyayutsya grafami, dopolnitelnymi k grafu Zeidelya”, Dokl. RAN, 434:4 (2010), 447–449

[2] Belousov I.N., Makhnev A.A., Nirova M.S., “Distantsionno regulyarnye grafy, v kotorykh okrestnosti vershin silno regulyarny s sobstvennym znacheniem 2”, Dokl. RAN, 447:5 (2012), 475–478

[3] Gavrilyuk A.L., Go Venbin, Makhnev A.A., “Ob avtomorfizmakh grafov Tervilligera s $\mu$ = 2”, Algebra i logika, 47:5 (2008), 584–600

[4] Makhnev A.A., Paduchikh D.V., “Ob avtomorfizmakh distantsionno regulyarnogo grafa s massivom peresechenii {81,60,1;1,20,81}”, Dokl. RAN, 435:3 (2010), 305–309

[5] Makhnev A.A., Paduchikh D.V., “Distantsionno-regulyarnye grafy, v kotorykh okrestnosti vershin silno regulyarny so vtorym sobstvennym znacheniem, ne bolshim 3”, Dokl. RAN, 464:4 (2015), 396–400

[6] Makhnev A.A., Shermetova M.Kh., “Ob avtomorfizmakh distantsionno regulyarnogo grafa s massivom peresechenii {96,76,1;1,19,96}”, Sib. elektron. mat. izv., 15 (2018), 167–174 | DOI

[7] Makhnev A.A., Samoilenko M.S., “O distantsionno regulyarnykh nakrytiyakh klik s silno regulyarnymi okrestnostyami vershin”, Sovremennye problemy matematiki, tr. 46-i mezhdunarodnoi molodezhnoi shkoly-konferentsii, Ekaterinburg, 2015, 13–18

[8] Brouwer A.E., Cohen A.M., Neumaier A., Distance-regular graphs, Springer-Verlag, 1989, 495 pp.

[9] Cameron P., Permutation Groups, Cambridge Univ. Press, Cambridge, 1999, 220 pp.

[10] Makhnev A.A., Paduchikh D.V., “O gruppe avtomorfizmov distantsionno regulyarnogo grafa s massivom peresechenii {24,21,3;1,3,18}”, Algebra i logika, 51:4 (2012), 476–495

[11] Godsil C.D., Henzel A.D., “Distance-regular covers of the complete graphs”, J. Comb. Theory, ser. B, 56:2 (1992), 205–238 | DOI

[12] Gavrilyuk A.L., Makhnev A.A., “Ob avtomorfizmakh distantsionno regulyarnogo grafa s massivom peresechenii {56,45,1;1,9,56}”, Dokl. RAN, 432:5 (2010), 583–587

[13] Zavarnitsine A.V., “Finite simple groups with narrow prime spectrum”, Sibirean Electr. Math. Reports, 6 (2009), 1–12