On finite simple linear and unitary groups of small size over fields of different characteristics with coinciding prime graphs
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 73-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Suppose that $G$ is a finite group, $\pi(G)$ is the set of prime divisors of its order, and $\omega(G)$ is the set of orders of its elements. A graph with the following adjacency relation is defined on $\pi(G)$: different vertices $r$ and $s$ from $\pi(G)$ are adjacent if and only if $rs\in \omega(G)$. This graph is called the Gruenberg-Kegel graph or the prime graph of $G$ and is denoted by $GK(G)$. In A. V. Vasil'ev's Question 16.26 from the "Kourovka Notebook," it is required to describe all pairs of nonisomorphic simple nonabelian groups with identical Gruenberg-Kegel graphs. M. Hagie and M. A. Zvezdina gave such a description in the case where one of the groups coincides with a sporadic group and an alternating group, respectively. The author solved this question for finite simple groups of Lie type over fields of the same characteristic. In the present paper we prove the following theorem. Theorem. Let $G=A_{n-1}^{\pm}(q)$, where $n\in\{3,4,5,6\}$, and let $G_1$ be a finite simple group of Lie type over a field of order $q_1$ nonisomorphic to $G$, where $q=p^f$, $q_1=p_1^{f_1}$, and $p$ and $p_1$ are different primes. If the graphs $GK(G)$ and $GK(G_1)$ coincide, then one of the following statements holds: $(1)$ $\{G,G_1\}=\{A_1(7),A_1(8)\}$; $(2)$ $\{G,G_1\}=\{A_3(3),{^2}F_4(2)'\}$; $(3)$ $\{G,G_1\}=\{{^2}A_3(3),A_1(49)\}$; $(4)$ $\{G,G_1\}=\{A_2(q),{^3}D_4(q_1)\}$, where $(q-1)_3\neq~3$, $q+1\neq 2^k$, and $q_1>2$; $(5)$ $\{G,G_1\}=\{A_4^{\varepsilon}(q),A_4^{\varepsilon_1}(q_1)\}$, where $qq_1$ is odd; $(6)$ $\{G,G_1\}=\{A_4^{\varepsilon}(q),{^3}D_4(q_1)\}$, where $(q-\epsilon1)_5\neq 5$ and $q_1>2$; $(7)$ $G=A_5^{\varepsilon}(q)$ and $G_1\in\{B_3(q_1),C_3(q_1),D_4(q_1)\}$.
Keywords: finite simple group of Lie type, prime graph, Gruenberg-Kegel graph, spectrum.
@article{TIMM_2018_24_3_a8,
     author = {M. R. Zinov'eva},
     title = {On finite simple linear and unitary groups of small size over fields of different characteristics with coinciding prime graphs},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {73--90},
     year = {2018},
     volume = {24},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a8/}
}
TY  - JOUR
AU  - M. R. Zinov'eva
TI  - On finite simple linear and unitary groups of small size over fields of different characteristics with coinciding prime graphs
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 73
EP  - 90
VL  - 24
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a8/
LA  - ru
ID  - TIMM_2018_24_3_a8
ER  - 
%0 Journal Article
%A M. R. Zinov'eva
%T On finite simple linear and unitary groups of small size over fields of different characteristics with coinciding prime graphs
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 73-90
%V 24
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a8/
%G ru
%F TIMM_2018_24_3_a8
M. R. Zinov'eva. On finite simple linear and unitary groups of small size over fields of different characteristics with coinciding prime graphs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 73-90. http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a8/

[1] Nereshennye voprosy teorii grupp. Kourovskaya tetrad, 16-e izd., Izd-vo Novosib. gos. un-t, Novosibirsk, 2006

[2] Hagie M., “The prime graph of a sporadic simple group”, Comm. Algebra, 31:9 (2003), 4405–4424

[3] Zvezdina M.A., “O neabelevykh prostykh gruppakh s grafom prostykh chisel kak u znakoperemennoi gruppy”, Sib. mat. zhurn., 54:1 (2013), 65–76

[4] Kondratev A.S., “O komponentakh grafa prostykh chisel konechnykh prostykh grupp”, Mat. sb., 180:6 (1989), 787–797

[5] Williams J.S., “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513

[6] Vasilev A.V., Vdovin E.P., “Kriterii smezhnosti v grafe prostykh chisel”, Algebra i logika, 44:6 (2005), 682–725

[7] Vasilev A.V., Vdovin E.P., “Kokliki maksimalnogo razmera v grafe prostykh chisel konechnoi prostoi gruppy”, Algebra i logika, 50:4 (2011), 425–470

[8] Zsigmondy K., “Zur Theorie der Potenzreste”, Monatsh. Math. Phys., 3 (1892), 265–284

[9] Gerono G.C., “Note sur la r$\acute{e}$solution en nombres entiers et positifs de l'$\acute{e}$quation $x^m = y^n + 1$”, Nouv. Ann. Math. (2), 9 (1870), 469–471

[10] Crescenzo P., “A diophantine equation which arises in the theory of finite groups”, Adv. in Math., 17 (1975), 25–29

[11] Zavarnitsine A.V., “Recognition of the simple groups $L_3(q)$ by element orders”, J. Group Theory, 7 (2004), 81–97

[12] Zavarnitsine A.V., “Finite simple groups with narrow prime spectrum”, Sib. Elec. Math. Rep., 6 (2009), 1–12