Exceptional pseudogeometric graphs with eigenvalue r
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 68-72
Cet article a éte moissonné depuis la source Math-Net.Ru
A. Neumaier enumerated the parameters of strongly regular graphs with smallest eigenvalue $-m$. As a corollary it is proved that for a positive integer $r$ there exist only finitely many pseudogeometric graphs for $pG_{s-r}(s,t)$ with parameters different from the parameters of the net $pG_{s-r}(s,s-r)$ and from the parameters of the $pG_{s-r}(s,(s-r)(r+1)/r)$ graph complementary to the line graph of a Steiner 2-design ($s$ is a multiple of $r$). In this paper we explicitly specify functions $f(r)$ and $g(r)$ such that for $s>f(r)$ or $t>g(r)$ any pseudogeometric graph for $pG_{s-r}(s,t)$ has parameters of the net $pG_{s-r}(s,s-r)$ or parameters of $pG_{s-r}(s,(s-r)(r+1)/r)$.
Keywords:
strongly regular graph, pseudogeometric graph.
@article{TIMM_2018_24_3_a7,
author = {A. Kh. Zhurtov},
title = {Exceptional pseudogeometric graphs with eigenvalue r},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {68--72},
year = {2018},
volume = {24},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a7/}
}
A. Kh. Zhurtov. Exceptional pseudogeometric graphs with eigenvalue r. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 68-72. http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a7/
[1] Neumaier A., “Strongly regular graphs with smallest eigenvalue -m”, Arch. Math., 33 (1979), 392–400 | DOI
[2] Kabanov V.V., Makhnev A.A., Paduchikh D.V., “O silno regulyarnykh grafakh s sobstvennym znacheniem 2 i ikh rasshireniyakh”, Dokl. AN, 431:5 (2010), 583–586
[3] Makhnev A.A., Paduchikh D.V., “Isklyuchitelnye silno regulyarnye grafy s sobstvennym znacheniem 3”, Dokl. AN, 454:1 (2014), 7–30
[4] Makhnev A.A., “Cilno regulyarnye grafy s neglavnym sobstvennym znacheniem 4 i ikh rasshireniya”, Izv. Gomelskogo gos. un-ta, 84:3 (2014), 84–85