A graph with intersection array 18, 15, 1; 1, 5, 18 is not vertex-symmetric
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 62-67
Cet article a éte moissonné depuis la source Math-Net.Ru
A.A. Makhnev and V.P. Burichenko found possible intersection arrays of distance-regular locally cyclic graphs with at most 1000 vertices. They proposed a program for studying arc-transitive graphs with these intersection arrays. The neighborhood of a vertex in such a graph is the union of isolated polygons. We study automorphisms of a hypothetical distance-regular graph with intersection array {18, 15, 1; 1, 5, 18}. In particular, we prove that the automorphism group of this graph acts intransitively on the vertex set.
Keywords:
distance-regular graph
Mots-clés : graph automorphism.
Mots-clés : graph automorphism.
@article{TIMM_2018_24_3_a6,
author = {K. S. Efimov},
title = {A graph with intersection array 18, 15, 1; 1, 5, 18 is not vertex-symmetric},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {62--67},
year = {2018},
volume = {24},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a6/}
}
K. S. Efimov. A graph with intersection array 18, 15, 1; 1, 5, 18 is not vertex-symmetric. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 62-67. http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a6/
[1] Burichenko V.P., Makhnev A.A., “O vpolne regulyarnykh lokalno tsiklicheskikh grafakh”, Tez. dokl. 42 Vseross. konf. “Sovremennye problemy matematiki”, Ekaterinburg, 2011, 181–184
[2] Brouwer A.E., Cohen A.M., Neumaier A., Distance-regular graphs, Ergebnisse der Mathematik und ihrer Grenzgebiete: MATHE3, 18, Springer, Berlin, 1989 | DOI
[3] Cameron P.J., van Lint J., Graphs, codes and their links, Ser. London Math. Soc. Student Texts, 22, Cambridge Univ. Press, Cambridge, 1991, 252 pp.
[4] Gavrilyuk A.L., Makhnev A.A., “Ob avtomorfizmakh distantsionno regulyarnogo grafa s massivom peresechenii {56,45,1;1,9,56}”, Dokl. AN, 432:5 (2010), 512–515