Asymptotic expansion of a solution to a singular perturbation optimal control problem with a small coercivity coefficient
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 51-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider an optimal control problem for solutions of a boundary value problem for a singularly perturbed elliptic operator in a domain $\Omega$ with distributed control $$ \mathcal{L}_\varepsilon z_\varepsilon\mathop{:=}\nolimits -\varepsilon^2 \Delta z_\varepsilon+ a(x) z_\varepsilon= f + u_\varepsilon, \ \ ~x\in \Omega,\ \ ~z_\varepsilon\in H^1_0(\Omega), $$ $$ u_\varepsilon\in\mathcal{U} \mathop{:=}\nolimits\{u(\cdot)\in L_2(\Omega)~\colon \|u(\cdot)\|\leqslant 1 \,\}, $$ $$ J\mathop{:=}\nolimits \|z_\varepsilon(\cdot)-z_d(\cdot)\|^2 + \nu^{-1}\|u_\varepsilon(\cdot)\|^{2}\rightarrow \mathrm{inf}. $$ A priori bounds are obtained for the optimality system, which show that a formal asymptotic solution of the optimality system is an asymptotic expansion of the required solution of this system. A complete asymptotic expansion in the Erdelyi sense in the powers of the small parameter is constructed for the solution of the optimality system for the optimal control problem under consideration. In contrast to the previous papers on this topic, the nonnegative potential $a(\cdot)$ may vanish at a finite number of points. This problem has greater regularity as compared to the problem of studying the asymptotic expansion of the boundary value problem for this operator. The asymptotic expansion consists of an outer power expansion and an inner expansion (in a neighborhood of the boundary of $\Omega$) with exponentially decreasing coefficients.
Keywords: optimal control, asymptotic expansion, singular perturbation problems, small parameter.
@article{TIMM_2018_24_3_a5,
     author = {A. R. Danilin},
     title = {Asymptotic expansion of a solution to a singular perturbation optimal control problem with a small coercivity coefficient},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {51--61},
     year = {2018},
     volume = {24},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a5/}
}
TY  - JOUR
AU  - A. R. Danilin
TI  - Asymptotic expansion of a solution to a singular perturbation optimal control problem with a small coercivity coefficient
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 51
EP  - 61
VL  - 24
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a5/
LA  - ru
ID  - TIMM_2018_24_3_a5
ER  - 
%0 Journal Article
%A A. R. Danilin
%T Asymptotic expansion of a solution to a singular perturbation optimal control problem with a small coercivity coefficient
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 51-61
%V 24
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a5/
%G ru
%F TIMM_2018_24_3_a5
A. R. Danilin. Asymptotic expansion of a solution to a singular perturbation optimal control problem with a small coercivity coefficient. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 51-61. http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a5/

[1] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami c chastnymi proizvodnymi, Mir, M., 1972, 416 pp.

[2] Erdelui A., Wyman M., “The asymptotic evaluation of certain integral”, Arsh. Ration. Mech. Anal., 14 (1963), 217–260

[3] Ilin A.M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp.

[4] Ilin A.M., Danilin A.R., Asimptoticheskie metody v analize, Fizmatlit, M., 2009, 248 pp.

[5] Danilin A.R., “Approksimatsiya singulyarno vozmuschennoi ellipticheskoi zadachi optimalnogo upravleniya”, Mat. sb., 191:10 (2000), 3–12

[6] Sobolev S.L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, L., 1950, 255 pp.

[7] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971, 371 pp.

[8] Rektoris K., Variatsionnye metody v matematicheskoi fizike i tekhnike, Mir, M., 1985, 590 pp.

[9] Danilin A.R., “Asimptotika ogranichennykh upravlenii dlya singulyarnoi ellipticheskoi zadachi v oblasti s maloi polostyu”, Mat. sb., 189:11 (1998), 27–60

[10] Danilin A.R., “Optimalnoe granichnoe upravlenie v oblasti s maloi polostyu”, Ufim. mat. zhurn., 4:2 (2012), 87–100

[11] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi mat. nauk, 12:5 (1957), 3–122