Equivalence of the existence of nonconjugate and nonisomorphic Hall $\pi$-subgroups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 43-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\pi$ be some set of primes. A subgroup $H$ of a finite group $G$ is called a Hall $\pi$-subgroup if any prime divisor of the order $|H|$ of the subgroup $H$ belongs to $\pi$ and the index $|G:H|$ is not a multiple of any number in $\pi$. The famous Hall theorem states that a solvable finite group always contains a Hall $\pi$ subgroup and any two Hall $\pi$-subgroups of such group are conjugate. The converse of the Hall theorem is also true: for any nonsolvable group $G$, there exists a set $\pi$ such that $G$ does not contain Hall $\pi$-subgroups. Nevertheless, Hall $\pi$-subgroups may exist in a nonsolvable group. There are examples of sets $\pi$ such that, in any finite group containing a Hall $\pi$-subgroup, all Hall $\pi$-subgroups are conjugate (and, as a consequence, are isomorphic). In 1987 F. Gross showed that any set $\pi$ of odd primes has this property. In addition, in nonsolvable groups for some sets $\pi$, Hall $\pi$-subgroups can be nonconjugate but isomorphic (say, in $PSL_2(7)$ for $\pi=\{2,3\}$) and even nonisomorphic (in $PSL_2(11)$ for $\pi=\{2,3\}$). We prove that the existence of a finite group with nonconjugate Hall $\pi$-subgroups for a set $\pi$ implies the existence of a group with nonisomorphic Hall $\pi$-subgroups. The converse statement is obvious.
Keywords: Hall $\pi$-subgroup, conjugate subgroups.
Mots-clés : $\mathscr C_\pi$ condition
@article{TIMM_2018_24_3_a4,
     author = {Guo Wen Bin and A. A. Buturlakin and D. O. Revin},
     title = {Equivalence of the existence of nonconjugate and nonisomorphic {Hall} $\pi$-subgroups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {43--50},
     year = {2018},
     volume = {24},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a4/}
}
TY  - JOUR
AU  - Guo Wen Bin
AU  - A. A. Buturlakin
AU  - D. O. Revin
TI  - Equivalence of the existence of nonconjugate and nonisomorphic Hall $\pi$-subgroups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 43
EP  - 50
VL  - 24
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a4/
LA  - ru
ID  - TIMM_2018_24_3_a4
ER  - 
%0 Journal Article
%A Guo Wen Bin
%A A. A. Buturlakin
%A D. O. Revin
%T Equivalence of the existence of nonconjugate and nonisomorphic Hall $\pi$-subgroups
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 43-50
%V 24
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a4/
%G ru
%F TIMM_2018_24_3_a4
Guo Wen Bin; A. A. Buturlakin; D. O. Revin. Equivalence of the existence of nonconjugate and nonisomorphic Hall $\pi$-subgroups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 43-50. http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a4/

[1] Hall P., “Theorems like Sylow's”, Proc. London Math. Soc., s3-6:22 (1956), 286–304 | DOI

[2] Gross F., “Conjugacy of odd order Hall subgroups”, Bull. London Math. Soc., 19:4 (1987), 311–319 | DOI

[3] Buturlakin A.A., Revin D.O., “On p-complements of finite groups”, Sib. elektron. mat. izv., 10 (2013), 414–417

[4] Nesterov M.N., “Arifmetika sopryazhennosti p-dopolnenii”, Algebra i logika, 54:1 (2015), 53–69 | DOI

[5] Ljunggren W., “Einige S$\ddot{\mathrm{a}}$tze $\ddot{\mathrm{u}}$ber unbestimmte Gleichungen von der Form $\frac{x^n-1}{x-1}=y^q$”, Norsk Mat. Tidsskr., 25 (1943), 17–20

[6] Vdovin E.P., Revin D.O., “Teoremy silovskogo tipa”, Uspekhi mat. nauk, 66:5 (2011), 3–46 | DOI

[7] Vdovin E.P., Revin D.O., “O pronormalnosti khollovykh podgrupp”, Sib. mat. zhurn., 54:1 (2013), 35–43 | DOI

[8] Nesterov M.N., “O pronormalnosti i silnoi pronormalnosti khollovykh podgrupp”, Sib. mat. zhurn., 58:1 (2017), 165–173 | DOI

[9] Vdovin E.P., Nesterov M.N., Revin D.O., “O pronormalnosti khollovykh podgrupp v svoem normalnom zamykanii”, Algebra i logika, 56:6 (2017), 573–580 | DOI

[10] Go V., Revin D.O., “O klasse grupp s pronormalnymi $\pi$-khollovymi podgruppami”, Sib. mat. zhurn., 55:3 (2014), 509–524 | DOI

[11] Guo W., Structure theory of canonical classes of finite groups, Springer, Berlin, 2015, 359 pp.

[12] Hall P., Phillip Hall lecture notes on group theory - Part 6, Available at “Washington University Digital Gateway”, University of Cambridge, Cambridge, 1951-1967 URL: http://omeka.wustl.edu/omeka/items/show/10788

[13] Vdovin E.P., Revin D.O., “Pronormalnost khollovykh podgrupp v konechnykh prostykh gruppakh”, Sib. mat. zhurn., 53:3 (2012), 527–542 | DOI

[14] Vdovin E.P., Revin D.O., “Suschestvovanie pronormalnykh $\pi$-khollovykh podgrupp v $E_\pi$-gruppakh”, Sib. mat. zhurn., 56:3 (2015), 481–486 | DOI

[15] Revin D.O., Vdovin E.P., “Frattini argument for Hall subgroups”, J. Algebra, 414 (2014), 95–104 | DOI

[16] Guo W., Revin D.O., “Pronormality and submaximal $\mathfrak{X}$-subgroups”, Published online, Communications in Mathematics and Statistics, 2018, 1-29 | DOI

[17] Suzuki M., Group theory II, Springer-Verlag, N Y; Berlin; Heidelberg; Tokyo, 1986, 624 pp.