Mots-clés : $\mathscr C_\pi$ condition
@article{TIMM_2018_24_3_a4,
author = {Guo Wen Bin and A. A. Buturlakin and D. O. Revin},
title = {Equivalence of the existence of nonconjugate and nonisomorphic {Hall} $\pi$-subgroups},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {43--50},
year = {2018},
volume = {24},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a4/}
}
TY - JOUR AU - Guo Wen Bin AU - A. A. Buturlakin AU - D. O. Revin TI - Equivalence of the existence of nonconjugate and nonisomorphic Hall $\pi$-subgroups JO - Trudy Instituta matematiki i mehaniki PY - 2018 SP - 43 EP - 50 VL - 24 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a4/ LA - ru ID - TIMM_2018_24_3_a4 ER -
%0 Journal Article %A Guo Wen Bin %A A. A. Buturlakin %A D. O. Revin %T Equivalence of the existence of nonconjugate and nonisomorphic Hall $\pi$-subgroups %J Trudy Instituta matematiki i mehaniki %D 2018 %P 43-50 %V 24 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a4/ %G ru %F TIMM_2018_24_3_a4
Guo Wen Bin; A. A. Buturlakin; D. O. Revin. Equivalence of the existence of nonconjugate and nonisomorphic Hall $\pi$-subgroups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 43-50. http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a4/
[1] Hall P., “Theorems like Sylow's”, Proc. London Math. Soc., s3-6:22 (1956), 286–304 | DOI
[2] Gross F., “Conjugacy of odd order Hall subgroups”, Bull. London Math. Soc., 19:4 (1987), 311–319 | DOI
[3] Buturlakin A.A., Revin D.O., “On p-complements of finite groups”, Sib. elektron. mat. izv., 10 (2013), 414–417
[4] Nesterov M.N., “Arifmetika sopryazhennosti p-dopolnenii”, Algebra i logika, 54:1 (2015), 53–69 | DOI
[5] Ljunggren W., “Einige S$\ddot{\mathrm{a}}$tze $\ddot{\mathrm{u}}$ber unbestimmte Gleichungen von der Form $\frac{x^n-1}{x-1}=y^q$”, Norsk Mat. Tidsskr., 25 (1943), 17–20
[6] Vdovin E.P., Revin D.O., “Teoremy silovskogo tipa”, Uspekhi mat. nauk, 66:5 (2011), 3–46 | DOI
[7] Vdovin E.P., Revin D.O., “O pronormalnosti khollovykh podgrupp”, Sib. mat. zhurn., 54:1 (2013), 35–43 | DOI
[8] Nesterov M.N., “O pronormalnosti i silnoi pronormalnosti khollovykh podgrupp”, Sib. mat. zhurn., 58:1 (2017), 165–173 | DOI
[9] Vdovin E.P., Nesterov M.N., Revin D.O., “O pronormalnosti khollovykh podgrupp v svoem normalnom zamykanii”, Algebra i logika, 56:6 (2017), 573–580 | DOI
[10] Go V., Revin D.O., “O klasse grupp s pronormalnymi $\pi$-khollovymi podgruppami”, Sib. mat. zhurn., 55:3 (2014), 509–524 | DOI
[11] Guo W., Structure theory of canonical classes of finite groups, Springer, Berlin, 2015, 359 pp.
[12] Hall P., Phillip Hall lecture notes on group theory - Part 6, Available at “Washington University Digital Gateway”, University of Cambridge, Cambridge, 1951-1967 URL: http://omeka.wustl.edu/omeka/items/show/10788
[13] Vdovin E.P., Revin D.O., “Pronormalnost khollovykh podgrupp v konechnykh prostykh gruppakh”, Sib. mat. zhurn., 53:3 (2012), 527–542 | DOI
[14] Vdovin E.P., Revin D.O., “Suschestvovanie pronormalnykh $\pi$-khollovykh podgrupp v $E_\pi$-gruppakh”, Sib. mat. zhurn., 56:3 (2015), 481–486 | DOI
[15] Revin D.O., Vdovin E.P., “Frattini argument for Hall subgroups”, J. Algebra, 414 (2014), 95–104 | DOI
[16] Guo W., Revin D.O., “Pronormality and submaximal $\mathfrak{X}$-subgroups”, Published online, Communications in Mathematics and Statistics, 2018, 1-29 | DOI
[17] Suzuki M., Group theory II, Springer-Verlag, N Y; Berlin; Heidelberg; Tokyo, 1986, 624 pp.