Equivalence of the existence of nonconjugate and nonisomorphic Hall $\pi$-subgroups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 43-50
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\pi$ be some set of primes. A subgroup $H$ of a finite group $G$ is called a Hall $\pi$-subgroup if any prime divisor of the order $|H|$ of the subgroup $H$ belongs to $\pi$ and the index $|G:H|$ is not a multiple of any number in $\pi$. The famous Hall theorem states that a solvable finite group always contains a Hall $\pi$ subgroup and any two Hall $\pi$-subgroups of such group are conjugate. The converse of the Hall theorem is also true: for any nonsolvable group $G$, there exists a set $\pi$ such that $G$ does not contain Hall $\pi$-subgroups. Nevertheless, Hall $\pi$-subgroups may exist in a nonsolvable group. There are examples of sets $\pi$ such that, in any finite group containing a Hall $\pi$-subgroup, all Hall $\pi$-subgroups are conjugate (and, as a consequence, are isomorphic). In 1987 F. Gross showed that any set $\pi$ of odd primes has this property. In addition, in nonsolvable groups for some sets $\pi$, Hall $\pi$-subgroups can be nonconjugate but isomorphic (say, in $PSL_2(7)$ for $\pi=\{2,3\}$) and even nonisomorphic (in $PSL_2(11)$ for $\pi=\{2,3\}$). We prove that the existence of a finite group with nonconjugate Hall $\pi$-subgroups for a set $\pi$ implies the existence of a group with nonisomorphic Hall $\pi$-subgroups. The converse statement is obvious.
Keywords:
Hall $\pi$-subgroup, conjugate subgroups.
Mots-clés : $\mathscr C_\pi$ condition
Mots-clés : $\mathscr C_\pi$ condition
@article{TIMM_2018_24_3_a4,
author = {Guo Wen Bin and A. A. Buturlakin and D. O. Revin},
title = {Equivalence of the existence of nonconjugate and nonisomorphic {Hall} $\pi$-subgroups},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {43--50},
publisher = {mathdoc},
volume = {24},
number = {3},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a4/}
}
TY - JOUR AU - Guo Wen Bin AU - A. A. Buturlakin AU - D. O. Revin TI - Equivalence of the existence of nonconjugate and nonisomorphic Hall $\pi$-subgroups JO - Trudy Instituta matematiki i mehaniki PY - 2018 SP - 43 EP - 50 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a4/ LA - ru ID - TIMM_2018_24_3_a4 ER -
%0 Journal Article %A Guo Wen Bin %A A. A. Buturlakin %A D. O. Revin %T Equivalence of the existence of nonconjugate and nonisomorphic Hall $\pi$-subgroups %J Trudy Instituta matematiki i mehaniki %D 2018 %P 43-50 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a4/ %G ru %F TIMM_2018_24_3_a4
Guo Wen Bin; A. A. Buturlakin; D. O. Revin. Equivalence of the existence of nonconjugate and nonisomorphic Hall $\pi$-subgroups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 43-50. http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a4/