Solvability issues for a class of convolution type nonlinear integral equations in $\mathbb {R}^n$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 247-262
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study a class of nonlinear multidimensional integral equations of convolution type. This class of equations is directly applied in the p-adic theory of open-closed strings. We prove the existence of an n-parametric family of nontrivial continuous bounded solutions and establish certain properties of the constructed solutions: monotonicity in each argument, limit relations, and integral asymptotics. The solutions are used to study a nonlinear problem for the multidimensional heat equation. At the end of the paper we give example of such equations, which are of independent theoretical and practical interest.
Keywords: nontrivial solution, monotonicity, p-adic theory, limit, successive approximations.
@article{TIMM_2018_24_3_a21,
     author = {Kh. A. Khachatryan and H. S. Petrosyan and M. H. Avetisyan},
     title = {Solvability issues for a class of convolution type nonlinear integral equations in $\mathbb {R}^n$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {247--262},
     year = {2018},
     volume = {24},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a21/}
}
TY  - JOUR
AU  - Kh. A. Khachatryan
AU  - H. S. Petrosyan
AU  - M. H. Avetisyan
TI  - Solvability issues for a class of convolution type nonlinear integral equations in $\mathbb {R}^n$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 247
EP  - 262
VL  - 24
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a21/
LA  - ru
ID  - TIMM_2018_24_3_a21
ER  - 
%0 Journal Article
%A Kh. A. Khachatryan
%A H. S. Petrosyan
%A M. H. Avetisyan
%T Solvability issues for a class of convolution type nonlinear integral equations in $\mathbb {R}^n$
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 247-262
%V 24
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a21/
%G ru
%F TIMM_2018_24_3_a21
Kh. A. Khachatryan; H. S. Petrosyan; M. H. Avetisyan. Solvability issues for a class of convolution type nonlinear integral equations in $\mathbb {R}^n$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 247-262. http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a21/

[1] Volovich I.V., “p-adic string”, Classical Quantum Gravity, 4:4 (1987), L83-L87 | DOI

[2] Vladimirov V.S., Volovich Ya.I., “O nelineinom uravnenii dinamiki v teorii p-adicheskoi struny”, Teoret. mat. fizika, 138:3 (2004), 355–368

[3] Vladimirov V.S., “O nelineinykh uravneniyakh p-adicheskikh otkrytykh zamknutnykh i otkryto-zamknutnykh strun”, Teoret. mat. fizika, 149:3 (2006), 354–367

[4] Vladimirov V.S., “O resheniyakh p-adicheskikh strunnykh uravnenii”, Teoret. mat. fizika, 167:2 (2011), 163–170

[5] Vladimirov V.S., “Ob uravnenii p-adicheskoi otkrytoi struny dlya skalyarnogo polya takhionov”, Izv. RAN. Ser. matematicheskaya, 69:3 (2005), 55–80

[6] Zhukovskaya L.V., “Iteratsionnyi metod resheniya nelineinykh integralnykh uravnenii, opisyvayuschikh rolingovye resheniya v teorii struny”, Teoret. mat. fizika, 146:3 (2006), 402–409

[7] Khachatryan Kh.A., “O razreshimosti nekotorykh klassov nelineinykh integralnykh uravneniii v teorii p-adicheskoi struny”, Izv. RAN. Ser. matematicheskaya, 82:2 (2018), 173–194

[8] Khachatryan Kh.A., “O razreshimosti odnoi granichnoi zadachi v p-adicheskoi teorii strun”, Tr. Moskovskogo matematicheskogo obschestva, 79:1 (2018), 117–132

[9] Khachatryan Kh.A., Avetisyan M.H., “On solvability of one infinite nonlinear system of algebraic equations with Teoplitz-Hankel matrices”, Proc. Yerevan State Univ., 51:2 (2017), 158–167

[10] Khachatryan Kh.A., Terdzhyan Ts.E., Avetisyan M.O., “Odnoparametricheskoe semeistvo ogranichennykh reshenii dlya odnoi sistemy nelineinykh integralnykh uravnenii na vsei pryamoi”, Izv. NAN Armenii. Matematika, 53:4 (2018), 72–86

[11] Fikhtengolts G.M., Kurs differentsialnogo i integralnogo ischisleniya, 2, Fizmatlit, M., 1966, 800 pp.

[12] Gevorgyan G.G., Engibaryan N.B., “Novye teoremy dlya integralnogo uravneniya vosstanovleniya”, Izv. NAN Armenii. Matematika, 32:1 (1997), 5–20

[13] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, 5-e izd., Nauka, M., 1981, 544 pp.

[14] Gelfand I.M., Shilov G.E., Obobschennye funktsii, v. 2, Prostranstva osnovnykh i obobschennykh funktsii, Fizmatlit, M., 1958, 310 pp.

[15] Tikhonov A.N., Samarskii A.A., Uravneniya matematicheskoi fiziki, Nauka, M., 1977, 735 pp.

[16] Khachatryan A.Kh., Khachatryan Kh.A., “Solavability of a class of nonlinear pseudo-differential equations in $\mathbb{R}^n$”, p-Adic Numbers, Ultrametric Anal. Appl., 10:2 (2018), 90–99 | DOI