Mots-clés : Fourier transform.
@article{TIMM_2018_24_3_a2,
author = {E. V. Berestova},
title = {Plancherel-Polya inequality for entire functions of exponential type in $L^2(\mathbb{R}^n)$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {27--33},
year = {2018},
volume = {24},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a2/}
}
TY - JOUR
AU - E. V. Berestova
TI - Plancherel-Polya inequality for entire functions of exponential type in $L^2(\mathbb{R}^n)$
JO - Trudy Instituta matematiki i mehaniki
PY - 2018
SP - 27
EP - 33
VL - 24
IS - 3
UR - http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a2/
LA - ru
ID - TIMM_2018_24_3_a2
ER -
E. V. Berestova. Plancherel-Polya inequality for entire functions of exponential type in $L^2(\mathbb{R}^n)$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 27-33. http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a2/
[1] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977, 456 pp.
[2] Gel'fand I.M., Shilov G.E., Generalized functions: Spaces of fundamental and generalized functions, Acad. Press, N Y, London, 1968, 261 pp.
[3] Levin B.Ya., Lectures on entire functions, American Math. Soc., Providence, Rhode Island, 1996, 248 pp.
[4] Plancherel M., Polya G., “Fontions entieres et integrales de Fourier multiples”, Commentarii Mathematici Helvetici, 10 (1937-1938), 110–163
[5] Boas R.P.,Jr., “Entire functions bounded on a line”, Duke Math. J., 1940, no. 6, 148–169 | DOI
[6] Donoho D.L., Logan B.F., “Signal recovery and the large sieve”, SIAM J. Appl. Math., 52:2 (1992), 577–591 | DOI
[7] Norvidas S., “Concentration of $L^p$-bandlimited functions on discrete sets”, Lithuanian Math. J., 54:4 (2014), 471–481 | DOI
[8] Nikolskii S.M., “Neravenstva dlya tselykh funktsii konechnoi stepeni i ikh primenenie v teorii differentsiruemykh funktsii mnogikh peremennykh”, Tr. MIAN, 38 (1951), 244–278
[9] Lubinsky D.S., “On sharp constants in Marcinkiewicz - Zygmund and Plancherel - Polya inequalities”, Proc. American Math. Soc., 142:10 (2014), 3575–3584 | DOI
[10] Polya G., “Uber ganze Funktionen vom Minimaltypus der Ordnung 1, Aufgabe 105”, Jahresbericht der Deutschen Mathematiker Vereinigung, 40 (1931), 9–12
[11] Berestova E.V., “Plancherel - Polya inequality for entire functions of exponential type in $L^2(\mathbb{R})$”, Analysis Math., 44:1 (2018), 43–50 | DOI
[12] Stein E., Weiss G., Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, 1971, 297 pp.
[13] Hardy G. H., Littlewood J. E., Polya G., Inequalities, Cambridge University Press, Cambridge, 1934, 340 pp.