Plancherel-Polya inequality for entire functions of exponential type in $L^2(\mathbb{R}^n)$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 27-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\mathfrak{M}_{\sigma,n}^p$, $p>0$, be a set of entire functions $f$ of $n$ complex variables with exponential type $\sigma=(\sigma_1,\ldots,\sigma_n)$, $\sigma_k>0$, such that their restrictions to $\mathbb{R}^n$ belong to $L^p(\mathbb{R}^n)$. In 1937 Plancherel and Polya showed that $\sum_{k \in \mathbb{Z}^n}|f(k)|^p \le c_p(\sigma, n) \|f\|^p_{L^p(\mathbb{R}^n)}$ for $f\in \mathfrak{M}_{\sigma,n}^p$, where $c_p(\sigma, n)$ is a finite constant. We study the Plancherel-Polya inequality for $p=2$. If $0\sigma_k\le \pi$, then, by the Whittaker-Kotelnikov-Shannon theorem and its generalization to the multidimensional case established by Plancherel and Polya, we have $c_2(\sigma, n)=1$ and any function $f\in \mathfrak{M}_{\sigma,n}^2$ is extremal. In the general case, we prove that $c_2(\sigma, n)=\prod_{k = 1}^{n}\left\lceil~\sigma_k/\pi \right\rceil~$ and describe the class of extremal functions. We also write the dual problem $\big|\sum_{k \in \mathbb{Z}^n} (g\ast g)(k)\big| \le d_2(\sigma,n) \|g\|_2^2$, $g \in ~L^2\left(\Omega\right)$, prove that $c_2(\sigma,n)=d_2(\sigma,n)$, and describe the class of extremal functions.
Keywords: Plancherel-Polya inequality, Paley-Wiener space, entire function of exponential type
Mots-clés : Fourier transform.
@article{TIMM_2018_24_3_a2,
     author = {E. V. Berestova},
     title = {Plancherel-Polya inequality for entire functions of exponential type in $L^2(\mathbb{R}^n)$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {27--33},
     year = {2018},
     volume = {24},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a2/}
}
TY  - JOUR
AU  - E. V. Berestova
TI  - Plancherel-Polya inequality for entire functions of exponential type in $L^2(\mathbb{R}^n)$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 27
EP  - 33
VL  - 24
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a2/
LA  - ru
ID  - TIMM_2018_24_3_a2
ER  - 
%0 Journal Article
%A E. V. Berestova
%T Plancherel-Polya inequality for entire functions of exponential type in $L^2(\mathbb{R}^n)$
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 27-33
%V 24
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a2/
%G ru
%F TIMM_2018_24_3_a2
E. V. Berestova. Plancherel-Polya inequality for entire functions of exponential type in $L^2(\mathbb{R}^n)$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 27-33. http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a2/

[1] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977, 456 pp.

[2] Gel'fand I.M., Shilov G.E., Generalized functions: Spaces of fundamental and generalized functions, Acad. Press, N Y, London, 1968, 261 pp.

[3] Levin B.Ya., Lectures on entire functions, American Math. Soc., Providence, Rhode Island, 1996, 248 pp.

[4] Plancherel M., Polya G., “Fontions entieres et integrales de Fourier multiples”, Commentarii Mathematici Helvetici, 10 (1937-1938), 110–163

[5] Boas R.P.,Jr., “Entire functions bounded on a line”, Duke Math. J., 1940, no. 6, 148–169 | DOI

[6] Donoho D.L., Logan B.F., “Signal recovery and the large sieve”, SIAM J. Appl. Math., 52:2 (1992), 577–591 | DOI

[7] Norvidas S., “Concentration of $L^p$-bandlimited functions on discrete sets”, Lithuanian Math. J., 54:4 (2014), 471–481 | DOI

[8] Nikolskii S.M., “Neravenstva dlya tselykh funktsii konechnoi stepeni i ikh primenenie v teorii differentsiruemykh funktsii mnogikh peremennykh”, Tr. MIAN, 38 (1951), 244–278

[9] Lubinsky D.S., “On sharp constants in Marcinkiewicz - Zygmund and Plancherel - Polya inequalities”, Proc. American Math. Soc., 142:10 (2014), 3575–3584 | DOI

[10] Polya G., “Uber ganze Funktionen vom Minimaltypus der Ordnung 1, Aufgabe 105”, Jahresbericht der Deutschen Mathematiker Vereinigung, 40 (1931), 9–12

[11] Berestova E.V., “Plancherel - Polya inequality for entire functions of exponential type in $L^2(\mathbb{R})$”, Analysis Math., 44:1 (2018), 43–50 | DOI

[12] Stein E., Weiss G., Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, 1971, 297 pp.

[13] Hardy G. H., Littlewood J. E., Polya G., Inequalities, Cambridge University Press, Cambridge, 1934, 340 pp.