Automorphisms of a distance-regular graph with intersection array 196, 156, 1; 1, 39, 196
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 226-232 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A. Makhnev and M. Samoilenko found intersection arrays of antipodal distance-regular graphs of diameter 3 and degree at most 1000 in which $\lambda=\mu$ and the neighborhoods of vertices are strongly regular. Automorphisms of distance-regular graphs in which the neighborhoods of vertices are strongly regular with second eigenvalue 3 except for graphs with intersection arrays $\{196,156,1;1,39,196\}$ and $\{205,136,1;1,68,205\}$ were found earlier. We find possible prime orders of elements in the automorphism group of a distance-regular graph with intersection array $\{196,156,1;1,39,196\}$ as well as their fixed-point subgraphs. It is proved that the automorphism group of this graph acts intransitively on the vertex set.
Keywords: distance-regular graph
Mots-clés : automorphism.
@article{TIMM_2018_24_3_a19,
     author = {A. A. Tokbaeva},
     title = {Automorphisms of a distance-regular graph with intersection array 196, 156, 1; 1, 39, 196},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {226--232},
     year = {2018},
     volume = {24},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a19/}
}
TY  - JOUR
AU  - A. A. Tokbaeva
TI  - Automorphisms of a distance-regular graph with intersection array 196, 156, 1; 1, 39, 196
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 226
EP  - 232
VL  - 24
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a19/
LA  - ru
ID  - TIMM_2018_24_3_a19
ER  - 
%0 Journal Article
%A A. A. Tokbaeva
%T Automorphisms of a distance-regular graph with intersection array 196, 156, 1; 1, 39, 196
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 226-232
%V 24
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a19/
%G ru
%F TIMM_2018_24_3_a19
A. A. Tokbaeva. Automorphisms of a distance-regular graph with intersection array 196, 156, 1; 1, 39, 196. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 226-232. http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a19/

[1] Makhnev A.A., Samoilenko M.S., “O distantsionno regulyarnykh nakrytiyakh klik s silno regulyarnymi okrestnostyami vershin”, Sovremennye problemy matematiki, tr. 46-i Mezhdunar. molodezhnoi shk.-konf., Ekaterinburg, 2015, 13–18

[2] Efimov K.S., Makhnev A.A., “On automorphisms of a distance-regular graph with intersection array {25,16,1;1,8,25}”, Ural Math. J., 3 (2017), 28–32

[3] Makhnev A.A., Shermetova M.Kh., “Ob avtomorfizmakh distantsionno regulyarnogo grafa s massivom peresechenii {96,76,1;1,19,96}”, Sib. elektron. mat. izv., 15 (2018), 167–174 | DOI

[4] Ageev P.S., Makhnev A.A., “Avtomorfizmy grafa s massivom peresechenii {99,84,1;1,14,99}”, Dokl. RAN, 458:1 (2010), 7–11 | DOI

[5] Efimov K.S., Makhnev A.A., “Automorphisms of a distance-regular graph with intersection array {100,66,1;1,33,100}”, Sib. Electron. Math. Reports, 12 (2015), 795–801 | DOI

[6] Kagazezheva A.M., “Avtomorfizmy grafa s massivom peresechenii {169,126,1;1,42,169}”, Sib. elektron. mat. izv., 12 (2015), 318–327 | DOI

[7] Belousov I.N., Makhnev A.A., “Avtomorfizmy distantsionno regulyarnogo grafa s massivom peresechenii {176,150,1;1,25,176}”, Sib. elektron. mat. izv., 13 (2016), 754–761

[8] Makhnev A.A., Paduchikh D.V., “Distantsionno-regulyarnye grafy, v kotorykh okrestnosti vershin silno regulyarny so vtorym sobstvennym znacheniem, ne bolshim 3”, Dokl. RAN, 464:4 (2015), 396–400 | DOI

[9] Brouwer A.E., Cohen A.M., Neumaier A., Distance-regular graphs, Springer-Verlag, 1989, 495 pp.

[10] Cameron P., Permutation groups, Cambridge Univ. Press, Cambridge, 1999, 220 pp.

[11] Gavrilyuk A.L., Makhnev A.A., “Ob avtomorfizmakh distantsionno regulyarnogo grafa s massivom peresechenii {56,45,1;1,9,56}”, Dokl. RAN, 432:5 (2010), 583–587

[12] Zavarnitsine A.V., “Finite simple groups with narrow prime spectrum”, Sib. Electr. Math. Reports, 6 (2009), 1–12

[13] Godsil C.D., Hensel A.D., “Distance-regular covers of the complete graphs”, J. Comb. Theory. Ser. B, 56 (1992), 205–238