Automorphisms of a distance-regular graph with intersection array {196, 156, 1; 1, 39, 196}
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 226-232
Voir la notice de l'article provenant de la source Math-Net.Ru
A. Makhnev and M. Samoilenko found intersection arrays of antipodal distance-regular graphs of diameter 3 and degree at most 1000 in which $\lambda=\mu$ and the neighborhoods of vertices are strongly regular. Automorphisms of distance-regular graphs in which the neighborhoods of vertices are strongly regular with second eigenvalue 3 except for graphs with intersection arrays $\{196,156,1;1,39,196\}$ and $\{205,136,1;1,68,205\}$ were found earlier. We find possible prime orders of elements in the automorphism group of a distance-regular graph with intersection array $\{196,156,1;1,39,196\}$ as well as their fixed-point subgraphs. It is proved that the automorphism group of this graph acts intransitively on the vertex set.
Keywords:
distance-regular graph
Mots-clés : automorphism.
Mots-clés : automorphism.
@article{TIMM_2018_24_3_a19,
author = {A. A. Tokbaeva},
title = {Automorphisms of a distance-regular graph with intersection array {196, 156, 1; 1, 39, 196}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {226--232},
publisher = {mathdoc},
volume = {24},
number = {3},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a19/}
}
TY - JOUR
AU - A. A. Tokbaeva
TI - Automorphisms of a distance-regular graph with intersection array {196, 156, 1; 1, 39, 196}
JO - Trudy Instituta matematiki i mehaniki
PY - 2018
SP - 226
EP - 232
VL - 24
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a19/
LA - ru
ID - TIMM_2018_24_3_a19
ER -
A. A. Tokbaeva. Automorphisms of a distance-regular graph with intersection array {196, 156, 1; 1, 39, 196}. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 226-232. http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a19/