Keywords: splines, approximation, differential operators, difference operators.
@article{TIMM_2018_24_3_a18,
author = {Yu. N. Subbotin and S. I. Novikov and V. T. Shevaldin},
title = {Extremal functional interpolation and splines},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {200--225},
year = {2018},
volume = {24},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a18/}
}
TY - JOUR AU - Yu. N. Subbotin AU - S. I. Novikov AU - V. T. Shevaldin TI - Extremal functional interpolation and splines JO - Trudy Instituta matematiki i mehaniki PY - 2018 SP - 200 EP - 225 VL - 24 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a18/ LA - ru ID - TIMM_2018_24_3_a18 ER -
Yu. N. Subbotin; S. I. Novikov; V. T. Shevaldin. Extremal functional interpolation and splines. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 200-225. http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a18/
[1] Gelfond A.O., Ischislenie konechnykh raznostei, Nauka, M., 1967, 376 pp.
[2] Krein M.G., “Integralnye uravneniya na polupryamoi s yadrami, zavisyaschimi ot raznosti argumentov”, Uspekhi mat. nauk, 13:5 (1958), 3–120
[3] Markushevich A.I., Kratkii kurs teorii analiticheskikh funktsii, Nauka, M., 1966, 388 pp.
[4] Novikov S.I., Shevaldin V.T., “Ob odnoi zadache ekstremalnoi interpolyatsii dlya funktsii mnogikh peremennykh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 7:1 (2001), 144–159
[5] Novikov S.I., “Periodicheskaya interpolyatsiya s minimalnym znacheniem normy m-i proizvodnoi”, Sib. zhurn. vychisl. matematiki, 9:2 (2006), 165–172
[6] Novikov S.I., “Interpolyatsiya s minimalnym znacheniem normy operatora Laplasa v share”, Zbirnik prats Institutu matematiki NAN Ukraïni, 5:1 (2008), 248–262
[7] Novikov S.I., “Zadachi interpolyatsii s minimalnym znacheniem normy operatora Laplasa na klasse interpoliruemykh dannykh”, Tr. Mezhdunar. letnei mat. shk.-konf. S. B. Stechkina po teorii funktsii (Tadzhikistan), Izd.-vo OOO "Ofset", Dushanbe, 2016, 182–185
[8] Patsko N.L., “Priblizhenie splainami na otrezke”, Mat. zametki, 16:3 (1974), 491–500
[9] Patsko N.L., “Priblizhenie splainami na otrezke v prostranstve $L_p$”, Mat. zametki, 58:2 (1995), 281–294
[10] Ryabenkii V.S., Filippov A.F., Ob ustoichivosti raznostnykh uravnenii, GITTL, M., 1956, 171 pp.
[11] Sobolev S.L., Lektsii po teorii kubaturnykh formul, Ch. 2, Izd-vo Novosibir. gos. un-ta, Novosibirsk, 1965, 263 pp.
[12] Stechkin S.B., Subbotin Yu.N., Splainy v vychislitelnoi matematike, Nauka, M., 1976, 248 pp.
[13] Subbotin Yu.N., “O svyazi mezhdu konechnymi raznostyami i sootvetstvuyuschimi proizvodnymi”, Tr. MIAN SSSR, 78 (1965), 24–42
[14] Subbotin Yu.N., “Funktsionalnaya interpolyatsiya v srednem s naimenshei n-i proizvodnoi”, Tr. MIAN SSSR, 88 (1967), 30–60
[15] Subbotin Yu.N., “Priblizhenie splain-funktsiyami i otsenki poperechnikov”, Tr. MIAN SSSR, 109 (1971), 35–60
[16] Subbotin Yu.N., “Priblizhenie splainami i gladkie bazisy v C(0,2$\pi$)”, Mat. zametki, 12:1 (1972), 43–51
[17] Subbotin Yu.N., “Ekstremalnaya funktsionalnaya interpolyatsiya i splainy”, Dokl. AN SSSR, 214:1 (1974), 56–58
[18] Subbotin Yu.N., “Ekstremalnye zadachi funktsionalnoi interpolyatsii i interpolyatsionnye v srednem splainy”, Tr. MIAN SSSR, 138 (1975), 118–173
[19] Subbotin Yu.N., “Ekstremalnye i approksimativnye svoistva splainov”, Teoriya priblizheniya funktsii, Tr. Mezhdunar. konf. po teorii priblizheniya funktsii (Kaluga, 24-28 iyulya 1975 g), Nauka, M., 1977, 341–345
[20] Subbotin Yu.N., “Ekstremalnaya funktsionalnaya interpolyatsiya v srednem s naimenshim znacheniem n-i proizvodnoi pri bolshikh intervalakh usredneniya”, Mat. zametki, 59:1 (1996), 114–132
[21] Subbotin Yu.N., “Ekstremalnaya v $L_p$ interpolyatsiya v srednem pri peresekayuschikhsya intervalakh usredneniya”, Izv. RAN. Ser. matematicheskaya, 61:1 (1997), 177–198
[22] Timofeev V.G., “Neravenstva tipa Kolmogorova s operatorom Laplasa”, Teoriya funktsii i approksimatsii, sb. st., Izd-vo SGU, Saratov, 1983, 84–92
[23] Tikhomirov V.M., Boyanov B.D., “O nekotorykh vypuklykh zadachakh teorii priblizhenii”, Serdica, 5:1 (1979), 83–96
[24] Chui Ch., Vvedenie v veivlety, Mir, M., 2001, 412 pp.
[25] Sharma A., Tsimbalario I., “Nekotorye lineinye differentsialnye operatory i obobschennye raznosti”, Mat. zametki, 21:2 (1977), 161–173
[26] Shevaldin V.T., “Ekstremalnaya interpolyatsiya s naimenshim znacheniem normy lineinogo differentsialnogo operatora”, Mat. zametki, 27:5 (1980), 721–740
[27] Shevaldin V.T., “Ob odnoi zadache ekstremalnoi interpolyatsii”, Mat. zametki, 29:4 (1981), 603–622
[28] Shevaldin V.T., “Nekotorye zadachi ekstremalnoi interpolyatsii v srednem”, Dokl. AN SSSR, 267:4 (1982), 803–805
[29] Shevaldin V.T., “Nekotorye zadachi ekstremalnoi interpolyatsii v srednem dlya lineinykh differentsialnykh operatorov”, Tr. MIAN SSSR, 164 (1983), 203–240
[30] Shevaldin V.T., “$\cal L$-splainy i poperechniki”, Mat. zametki, 33:5 (1983), 735–744
[31] Shevaldin V.T., “Otsenki snizu poperechnikov nekotorykh klassov periodicheskikh funktsii”, Tr. MIAN SSSR, 198 (1992), 242–267
[32] Shevaldin V.T., “Ekstremalnaya interpolyatsiya v srednem pri perekryvayuschikhsya intervalakh usredneniya i L-splainy”, Izv. RAN. Ser. matematicheskaya, 62:4 (1998), 201–224
[33] Atteia M., “Functions “spline”, definies sur un ensemble convexe”, Numer. Math., 12 (1968), 192–210
[34] Behforooz H., “Approximation by integro cubic splines”, Appl. Math. Comput., 175 (2006), 8–15 | DOI
[35] de Boor C., “How small can one make the derivatives of an interpolating function?”, J. Approx. Theory, 13:2 (1990), 105–116 | DOI
[36] de Boor C., H$\ddot{\mathrm{o}}$llig K., Riemenschneider S., Box splines, Springer, New York etc., 1993, 200 pp.
[37] Burenkov V.I., Sobolev spaces on domains, Teubner Texts in Math., 137, B. G. Teubner Verlag GmbH, Stuttgart, 1998, 312 pp.
[38] de Concini C., Procesi C., Topics in hyperplane arrangements, polytopes and box-splines, Springer, N Y etc., 2010, 384 pp.
[39] Favard J., “Sur l'interpolation”, J. Math. Pures Appl., 19:9 (1940), 281–306
[40] Fisher S., Jerome J., “Minimum norm extremals in function spaces”, Lecture Notes in Math., 479 (1975), 1–209
[41] Holmes R., Geometric functional analysis and its applications, Springer Verlag, N.Y. etc., 1975, 246 pp.
[42] Kunkle T., “Favard's interpolation problem in one or more variables”, Constr. Approx., 18:4 (2002), 467–478 | DOI
[43] Madych W.R., Nelson S.A., “Polyharmonic cardinal splines”, J. Approx. Theory, 60:2 (1990), 141–156 | DOI
[44] Madych W.R., Nelson S.A., “Polyharmonic cardinal splines: a minimization property”, J. Approx. Theory, 63:3 (1990), 303–320 | DOI
[45] Micchelli C.A., “Cardinal $\cal L$-splines”, Studies in spline functions and approximation theory, Acad. Press, N Y, 1976, 203–250
[46] Novikov S.I., “Generalization of the Rolle theorem”, East J. Approx, 1:4 (1995), 571–575
[47] Schoenberg I.J., “Cardinal interpolation and spline functions”, J. Approx. Theory, 2:2 (1969), 167–206 | DOI
[48] Schoenberg I.J., “On Micchelli's theory of cardinal L-splines”, Studies in spline functions and approximation theory, Acad. Press, N Y, 1976, 251–276
[49] Sharma A., Tzimbalario J., “A generalization of a result of Subbotin”, Approximation theory - ll, Proc. Internat. Sympos., Univ. Texas, 1976, Acad. Press, N Y, 1976, 557–562
[50] Subbotin Yu.N., “Some extremal problems of interpolation and interpolation in the mean”, East J. Approx., 2:2 (1996), 155–167
[51] Zhanlav T., Mijiddorj R., “Integro quintic splines and their approximation properties”, Appl. Math. Comput., 231 (2014), 536–543 | DOI
[52] Zhanlav T., Mijiddorj R., Behforooz H., “Construction of local integro quintic splines”, Commun. Numer. Anal., 2016, no. 2, 167–179 | DOI
[53] Zhanlav T., Mijiddorj R., “Convexity and monotonicity properties of the local integro cubic spline”, Appl. Math. Comput., 293 (2017), 131–137 | DOI