Mots-clés : optimal correction
@article{TIMM_2018_24_3_a17,
author = {V. D. Skarin},
title = {The method of penalty functions and regularization in the analysis of improper convex programming problems},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {187--199},
year = {2018},
volume = {24},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a17/}
}
TY - JOUR AU - V. D. Skarin TI - The method of penalty functions and regularization in the analysis of improper convex programming problems JO - Trudy Instituta matematiki i mehaniki PY - 2018 SP - 187 EP - 199 VL - 24 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a17/ LA - ru ID - TIMM_2018_24_3_a17 ER -
V. D. Skarin. The method of penalty functions and regularization in the analysis of improper convex programming problems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 187-199. http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a17/
[1] Eremin I. I., Mazurov V. D., Astafev N. N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983, 336 pp.
[2] Mazurov Vl. D., Metod komitetov v zadachakh optimizatsii i klassifikatsii, Nauka, M., 1990, 246 pp.
[3] Khachay M. Yu., “On approximate algorithm of a minimal committee of a linear inequalities system”, Pattern Recogn. and Image Anal., 13:3 (2003), 459–464
[4] Popov L. D., “Primenenie barernykh funktsii dlya optimalnoi korrektsii nesobstvennykh zadach lineinogo programmirovaniya 1-go roda”, Avtomatika i telemekhanika, 2012, no. 3, 3–11
[5] Erokhin V. I., Krasnikov A. S., Khvostov M. N., “Matrichnye korrektsii zadach lineinogo programmirovaniya po minimumu evklidovoi normy”, Avtomatika i telemekhanika, 2012, no. 3, 219–231
[6] Skarin B. D., “O primenenii odnogo metoda regulyarizatsii dlya korrektsii nesobstvennykh zadach vypuklogo programmirovaniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:3 (2012), 230–241
[7] Dax A., “The smallest correction of an inconsistent system of linear inequalities”, Optimization and Engineering, 2:3 (2001), 349–359 | DOI
[8] Amaral P., Barahona P., “Connections between the total least squares and the correction of an infeasible system of linear inequalities”, Linear Algebra and Its Appl., 395 (2005), 191–210 | DOI
[9] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 288 pp.
[10] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 208 pp.
[11] Vasilev F. P., Metody optimizatsii, Kn. 1, 2, v. 1, MTsNMO, M., 2011, 620 pp.; т. 2, 433 с.
[12] Golub G. N., Hansen P. C., O'Leary D. P., “Tikhonov regularization and total least squares”, SIAM J. Matrix Anal. Appl., 21:1 (1999), 185–194 | DOI
[13] Renaut R. A., Guo N., “Efficient algorithms for solution of regularized total least squares”, SIAM J. Matrix Anal. Appl., 26:2 (2005), 457–476 | DOI
[14] Skarin V. D., “On the parameter control of the residual method for the correction of improper problems of convex programming”, Proc. DOOR 2016, Lecture Notes Comp. Sci., 9869, Springer International Publishing, Cham, 2016, 441–451 | DOI
[15] Eremin I. I., Astafev N. N., Vvedenie v teoriyu lineinogo i vypuklogo programmirovaniya, Nauka, M., 1976, 192 pp.