One approach to the solution of some problems in plasma dynamics
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 176-186
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A system of equations for the motion of an ionized ideal gas is considered. An algorithm for the reduction of this system of nonlinear partial differential equations (PDEs) to systems of ordinary differential equations (ODEs) is presented. It is shown that the independent variable $\psi$ in the systems of ODEs is determined from the relation $\psi=t+xf_1(\psi)+yf_2(\psi)+zf_3(\psi)$ after choosing (setting or finding) the functions $f_i(\psi)$, $i=1,2,3$. These functions are either found from the conditions of the problem posed for the original system of PDEs or are given arbitrarily to obtain a specific system of ODEs. For the problem on the motion of an ionized gas near a body, we write a system of ODEs and discuss the issue of instability, which is observed in a number of cases. We also consider a problem of the motion of flows (particles) in a given direction, which is of significant interest in some areas of physics. We find the functions $f_i(\psi)$, $i=1,2,3$, that provide the motion of a flow of the ionized gas in a given direction and reduce the system of PDEs to a system of ODEs.
Keywords: nonlinear partial differential equations, systems of ordinary differential equations, boundary value problem.
Mots-clés : exact solutions
@article{TIMM_2018_24_3_a16,
     author = {L. I. Rubina and O. N. Ul'yanov},
     title = {One approach to the solution of some problems in plasma dynamics},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {176--186},
     year = {2018},
     volume = {24},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a16/}
}
TY  - JOUR
AU  - L. I. Rubina
AU  - O. N. Ul'yanov
TI  - One approach to the solution of some problems in plasma dynamics
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 176
EP  - 186
VL  - 24
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a16/
LA  - ru
ID  - TIMM_2018_24_3_a16
ER  - 
%0 Journal Article
%A L. I. Rubina
%A O. N. Ul'yanov
%T One approach to the solution of some problems in plasma dynamics
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 176-186
%V 24
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a16/
%G ru
%F TIMM_2018_24_3_a16
L. I. Rubina; O. N. Ul'yanov. One approach to the solution of some problems in plasma dynamics. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 176-186. http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a16/

[1] Tonks L., Langmuir I., “Oscillations in ionozed gases”, Phys. Rev., 33 (1929), 1312–1317

[2] Galeev A.A., Sudan R., Osnovy fiziki plazmy, v 2 t., v. 1, Energoatomizdat, M., 1983, 640 pp.; т. 2, 1984, 631 с.

[3] Entsiklopediya nizkotemperaturnoi plazmy, v. I-IX, ed. red. V.E. Fortov, Nauka, M., 2000-2008

[4] Kalitkin N.N., Kostomarov D.P., “Matematicheskoe modelirovanie plazmy”, Mat. modelirovanie, 18:11 (2006), 67–94

[5] Brushlinskii K.V., “Chislennye modeli techenii ionizuyuschegosya gaza”, Entsiklopediya nizkotemperaturnoi plazmy. Ser. B, ch. 2, v. VII-1, ed. red. V.E. Fortov, YaNUS-K, M., 2008, 84–90

[6] “Virtual charge state separator as an advanced tool coupling measurements and simulations / S. Yaramyshev [et al.]”, Phys. Rev. ST Accel. Beams, 18 (2015), 050103 | DOI

[7] Perepelkin E.E., Repnikova N.P., Inozemtseva N.G., “Tochnoe reshenie zadachi prostranstvennogo zaryada dlya dvizheniya sfericheski simmetrichnogo puchka v odnorodnom elektricheskom pole”, Mat. zametki, 98:3 (2015), 386–392

[8] E. A. Berendeev, V. A. Vshivkov, A. A. Efimova, E. A. Mesyats, “Chislennoe modelirovanie razvitiya turbulentnosti pri vzaimodeistvii elektronnogo puchka s plazmoi”, Vychisl. metody i programmirovanie, 16:1 (2015), 139–145

[9] Mikhailovskii A.B., Teoriya plazmennykh neustoichivostei, v. 1, Neustoichivosti odnorodnoi plazmy, Atomizdat, M., 1975; т. 2, Неустойчивости неоднородной плазмы, 1977

[10] M. Kramer, A. G. Lyne, J. T. O'Brien, C. A. Jordan, D. R. Lorimer, “A periodically active pulsar giving insight into magnetospheric physics”, Science, 312:5773 (2006), 549–551 | DOI

[11] Courant R., Hilbert D., Methods of mathematical physics, Partial differential equations, Interscience, N Y, 1962, 830 pp.

[12] Rubina L.I., Ulyanov O.N., “O reshenii nekotorykh uravnenii nelineinoi akustiki”, Akusticheskii zhurnal, 61:5 (2015), 576–582

[13] Rubina L.I., Ulyanov O.N., “Ob analogiyakh v matematicheskom opisanii yavlenii konicheskoi refraktsii i turbulentnosti na primere techeniya vyazkoi neszhimaemoi zhidkosti”, Tez. dokl. Mezhdunar. konf. “XIII Zababakhinskie nauchnye chteniya” (20-26 marta 2017, g. Snezhinsk), 2017, 46–47