Voir la notice du chapitre de livre
Keywords: rational spline, shape-preserving interpolation.
@article{TIMM_2018_24_3_a15,
author = {A.-R. K. Ramazanov and V. G. Magomedova},
title = {Coconvex interpolation by splines with three-point rational interpolants},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {164--175},
year = {2018},
volume = {24},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a15/}
}
TY - JOUR AU - A.-R. K. Ramazanov AU - V. G. Magomedova TI - Coconvex interpolation by splines with three-point rational interpolants JO - Trudy Instituta matematiki i mehaniki PY - 2018 SP - 164 EP - 175 VL - 24 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a15/ LA - ru ID - TIMM_2018_24_3_a15 ER -
A.-R. K. Ramazanov; V. G. Magomedova. Coconvex interpolation by splines with three-point rational interpolants. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 164-175. http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a15/
[1] Schweikert D.G., “An interpolation curve using a spline in tension”, J. Math. Phys., 45:1–4 (1966), 312–317 | DOI
[2] Miroshnichenko V.L., “Convex and monotone spline interpolation”, Constuctive Theory of Function, Proc. Int. Conf. (Varna, 1984), Publ. House of Bulgarian Acad. Sci., Sofia, 1984, 610–620
[3] Miroshnichenko V.L., “Dostatochnye usloviya monotonnosti i vypuklosti dlya interpolyatsionnykh kubicheskikh splainov klassa $C^2$”, Vychislitelnye sistemy, sb. st., no. 137: Priblizhenie splainami, IM SO AN SSSR, Novosibirsk, 1990, 31–57
[4] Kvasov B.I., Metody izogeometricheskoi approksimatsii splainami, Fizmatlit, M., 2006, 360 pp.
[5] Yu.S. Volkov, V.V. Bogdanov, V.L. Miroshnichenko, V.T. Shevaldin, “Formosokhranyayuschaya interpolyatsiya kubicheskimi splainami”, Mat. zametki, 88:6 (2010), 836–844 | DOI
[6] Schaback R., “Spezielle rationale Splinefunktionen”, J. Approx.Theory, 7:2 (1973), 281–292 | DOI
[7] Spath H., Spline algorithms for curves and surfaces, Utilitas Mathematica Publ. Inc., Winnipeg, 1974, 198 pp.
[8] Hussain M. Z., Sarfraz M., Shaikh T. S., “Shape preserving rational cubic spline for positive and convex data”, Egyptian Informatics J., 12 (2011), 231–236 | DOI
[9] Edeo A., Gofeb G., Tefera T., “Shape preserving $C^2$ rational cubic spline interpolation”, American Sci. Research J. Engineering, Technology and Sciences, 12:1 (2015), 110–122
[10] Ramazanov A.-R. K., Magomedova V. G., “Splainy po ratsionalnym interpolyantam”, Dagestan. elektron. mat. izv., 2015, no. 4, 22–31
[11] Ramazanov A.-R. K., Magomedova V. G., “Splainy po trekhtochechnym ratsionalnym interpolyantam”, Tr. Matematicheskogo tsentra im. N.I. Lobachevskogo, 54, Kazan, 2017, 304–306
[12] Ramazanov A.-R. K., Magomedova V. G., “Splainy po trekhtochechnym ratsionalnym interpolyantam s avtonomnymi polyusami”, Dagestan. elektron. mat. izv., 2017, no. 7, 16–28
[13] Ramazanov A.-R. K., Magomedova V. G., “Bezuslovno skhodyaschiesya interpolyatsionnye ratsionalnye splainy”, Mat. zametki, 103:4 (2018), 588–599 | DOI