Coconvex interpolation by splines with three-point rational interpolants
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 164-175
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For discrete functions $f(x)$ defined on arbitrary grid nodes $\Delta: a=x_0 x_1 \dots x_N=b$ $(N\geqslant 3)$, we study the issues of preserving the (upward or downward) convexity and coconvexity with a change of convexity direction by rational spline-functions $R_{N,1}(x)=R_{N,1}(x,f,\Delta,g(t))=(R_i(x)(x-x_{i-1})+R_{i-1}(x)(x_i-x))/(x_i-x_{i-1})$, where $x\in [x_{i-1},x_i]$ $(i=1,2,\dots,N)$, $R_i(x)=\alpha_i+\beta_i(x-x_i)+\gamma_i/(x-g_i(t))$ $(i=1,2,\dots,N-1)$, and $R_i(x_j)=f(x_j)$ $(j=i-1,i,i+1)$. The location of the pole $g_i(t)$ with respect to the nodes $x_{i-1}$ and $x_i$ is defined by the parameter $t$. We assume that $R_0(x)\equiv R_1(x)$ and $R_N(x)\equiv R_{N-1}(x)$. For these spines we derive the conditions $1/2 |q_i| 2$ of convexity preservation, where $q_i=f(x_{i-2},x_{i-1},x_i)/f(x_{i-1},x_i,x_{i+1})$ for $i=2,3,\dots,N-1$.
Mots-clés : interpolation spline, coconvex interpolation
Keywords: rational spline, shape-preserving interpolation.
@article{TIMM_2018_24_3_a15,
     author = {A.-R. K. Ramazanov and V. G. Magomedova},
     title = {Coconvex interpolation by splines with three-point rational interpolants},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {164--175},
     year = {2018},
     volume = {24},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a15/}
}
TY  - JOUR
AU  - A.-R. K. Ramazanov
AU  - V. G. Magomedova
TI  - Coconvex interpolation by splines with three-point rational interpolants
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 164
EP  - 175
VL  - 24
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a15/
LA  - ru
ID  - TIMM_2018_24_3_a15
ER  - 
%0 Journal Article
%A A.-R. K. Ramazanov
%A V. G. Magomedova
%T Coconvex interpolation by splines with three-point rational interpolants
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 164-175
%V 24
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a15/
%G ru
%F TIMM_2018_24_3_a15
A.-R. K. Ramazanov; V. G. Magomedova. Coconvex interpolation by splines with three-point rational interpolants. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 164-175. http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a15/

[1] Schweikert D.G., “An interpolation curve using a spline in tension”, J. Math. Phys., 45:1–4 (1966), 312–317 | DOI

[2] Miroshnichenko V.L., “Convex and monotone spline interpolation”, Constuctive Theory of Function, Proc. Int. Conf. (Varna, 1984), Publ. House of Bulgarian Acad. Sci., Sofia, 1984, 610–620

[3] Miroshnichenko V.L., “Dostatochnye usloviya monotonnosti i vypuklosti dlya interpolyatsionnykh kubicheskikh splainov klassa $C^2$”, Vychislitelnye sistemy, sb. st., no. 137: Priblizhenie splainami, IM SO AN SSSR, Novosibirsk, 1990, 31–57

[4] Kvasov B.I., Metody izogeometricheskoi approksimatsii splainami, Fizmatlit, M., 2006, 360 pp.

[5] Yu.S. Volkov, V.V. Bogdanov, V.L. Miroshnichenko, V.T. Shevaldin, “Formosokhranyayuschaya interpolyatsiya kubicheskimi splainami”, Mat. zametki, 88:6 (2010), 836–844 | DOI

[6] Schaback R., “Spezielle rationale Splinefunktionen”, J. Approx.Theory, 7:2 (1973), 281–292 | DOI

[7] Spath H., Spline algorithms for curves and surfaces, Utilitas Mathematica Publ. Inc., Winnipeg, 1974, 198 pp.

[8] Hussain M. Z., Sarfraz M., Shaikh T. S., “Shape preserving rational cubic spline for positive and convex data”, Egyptian Informatics J., 12 (2011), 231–236 | DOI

[9] Edeo A., Gofeb G., Tefera T., “Shape preserving $C^2$ rational cubic spline interpolation”, American Sci. Research J. Engineering, Technology and Sciences, 12:1 (2015), 110–122

[10] Ramazanov A.-R. K., Magomedova V. G., “Splainy po ratsionalnym interpolyantam”, Dagestan. elektron. mat. izv., 2015, no. 4, 22–31

[11] Ramazanov A.-R. K., Magomedova V. G., “Splainy po trekhtochechnym ratsionalnym interpolyantam”, Tr. Matematicheskogo tsentra im. N.I. Lobachevskogo, 54, Kazan, 2017, 304–306

[12] Ramazanov A.-R. K., Magomedova V. G., “Splainy po trekhtochechnym ratsionalnym interpolyantam s avtonomnymi polyusami”, Dagestan. elektron. mat. izv., 2017, no. 7, 16–28

[13] Ramazanov A.-R. K., Magomedova V. G., “Bezuslovno skhodyaschiesya interpolyatsionnye ratsionalnye splainy”, Mat. zametki, 103:4 (2018), 588–599 | DOI