Coconvex interpolation by splines with three-point rational interpolants
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 164-175
Voir la notice de l'article provenant de la source Math-Net.Ru
For discrete functions $f(x)$ defined on arbitrary grid nodes $\Delta: a=x_0 x_1 \dots x_N=b$ $(N\geqslant 3)$, we study the issues of preserving the (upward or downward) convexity and coconvexity with a change of convexity direction by rational spline-functions $R_{N,1}(x)=R_{N,1}(x,f,\Delta,g(t))=(R_i(x)(x-x_{i-1})+R_{i-1}(x)(x_i-x))/(x_i-x_{i-1})$, where $x\in [x_{i-1},x_i]$ $(i=1,2,\dots,N)$, $R_i(x)=\alpha_i+\beta_i(x-x_i)+\gamma_i/(x-g_i(t))$ $(i=1,2,\dots,N-1)$, and $R_i(x_j)=f(x_j)$ $(j=i-1,i,i+1)$. The location of the pole $g_i(t)$ with respect to the nodes $x_{i-1}$ and $x_i$ is defined by the parameter $t$. We assume that $R_0(x)\equiv R_1(x)$ and $R_N(x)\equiv R_{N-1}(x)$. For these spines we derive the conditions $1/2 |q_i| 2$ of convexity preservation, where $q_i=f(x_{i-2},x_{i-1},x_i)/f(x_{i-1},x_i,x_{i+1})$ for $i=2,3,\dots,N-1$.
Mots-clés :
interpolation spline, coconvex interpolation
Keywords: rational spline, shape-preserving interpolation.
Keywords: rational spline, shape-preserving interpolation.
@article{TIMM_2018_24_3_a15,
author = {A.-R. K. Ramazanov and V. G. Magomedova},
title = {Coconvex interpolation by splines with three-point rational interpolants},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {164--175},
publisher = {mathdoc},
volume = {24},
number = {3},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a15/}
}
TY - JOUR AU - A.-R. K. Ramazanov AU - V. G. Magomedova TI - Coconvex interpolation by splines with three-point rational interpolants JO - Trudy Instituta matematiki i mehaniki PY - 2018 SP - 164 EP - 175 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a15/ LA - ru ID - TIMM_2018_24_3_a15 ER -
%0 Journal Article %A A.-R. K. Ramazanov %A V. G. Magomedova %T Coconvex interpolation by splines with three-point rational interpolants %J Trudy Instituta matematiki i mehaniki %D 2018 %P 164-175 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a15/ %G ru %F TIMM_2018_24_3_a15
A.-R. K. Ramazanov; V. G. Magomedova. Coconvex interpolation by splines with three-point rational interpolants. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 164-175. http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a15/