On the permutability of a Sylow subgroup with Schmidt subgroups from a supplement
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 145-154
Voir la notice de l'article provenant de la source Math-Net.Ru
A Schmidt group is a finite nonnilpotent group each of whose proper subgroups is nilpotent. A supplement of a subgroup $A$ in a group $G$ is a subgroup $B$ of $G$ such that $G=AB$. Finite groups in which a Sylow subgroup is permutable with some Schmidt subgroups were studied by Ya.G. Berkovich and E.M. Pal'chik (Sib. Mat. Zh. 8(4), 741-753 (1967)) and by V. N. Knyagina and V.S. Monakhov (Proc. Steklov Inst. Math. 272 (Suppl. 1), S55-S64 (2011)). In this situation, the group may be nonsolvable. For example, in the group PSL(2,7) a Sylow 2-subgroup is permutable with all Shmidt subgroups of odd order. In the group SL(2,8) a Sylow 3-subgroup is permutable with all 2-closed Shmidt subgroups of even order. In the group SL(2,4) a Sylow 5-subgroup is permutable with every 2-closed Shmidt subgroup of even order. Since the groups Sz$(2^{2k+1})$ for $k\geq 1$, PSU(5,4), PSU(4,2), and PSp$(4,2^n)$ do not contain Shmidt subgroups of odd order, in these groups any Sylow subgroup is permutable with any Shmidt subgroup of odd order. We establish the $r$-solvability a finite group $G$ such that $r$ is odd and is not a Fermat prime and a Sylow $r$-subgroup $R$ is permutable with 2-nilpotent (or 2-closed) Schmidt subgroups of even order from some supplement of $R$ in $G$. We give examples showing that the constraints on $r$ are not superfluous.
Keywords:
finite group, Schmidt group, Sylow r-subgroup.
Mots-clés : r-solvable group
Mots-clés : r-solvable group
@article{TIMM_2018_24_3_a13,
author = {V. S. Monakhov and E. V. Zubei},
title = {On the permutability of a {Sylow} subgroup with {Schmidt} subgroups from a supplement},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {145--154},
publisher = {mathdoc},
volume = {24},
number = {3},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a13/}
}
TY - JOUR AU - V. S. Monakhov AU - E. V. Zubei TI - On the permutability of a Sylow subgroup with Schmidt subgroups from a supplement JO - Trudy Instituta matematiki i mehaniki PY - 2018 SP - 145 EP - 154 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a13/ LA - ru ID - TIMM_2018_24_3_a13 ER -
%0 Journal Article %A V. S. Monakhov %A E. V. Zubei %T On the permutability of a Sylow subgroup with Schmidt subgroups from a supplement %J Trudy Instituta matematiki i mehaniki %D 2018 %P 145-154 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a13/ %G ru %F TIMM_2018_24_3_a13
V. S. Monakhov; E. V. Zubei. On the permutability of a Sylow subgroup with Schmidt subgroups from a supplement. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 145-154. http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a13/