Stabilizers of vertices of graphs with primitive automorphism groups and a strong version of the Sims conjecture. IV
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 109-132 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This is the fourth in a series of papers whose results imply the validity of a strengthened version of the Sims conjecture on finite primitive permutation groups. In this paper, the case of primitive groups with simple socle of orthogonal Lie type and nonparabolic point stabilizer is considered. Let $G$ be a finite group, and let $M_1$ and $M_2$ be distinct conjugate maximal subgroups of $G$. For any $i\in \mathbb N$, we define inductively subgroups $(M_1,M_2) ^{i}$ and $(M_2,M_1)^{i}$ of $M_1\cap M_2$, which will be called the $i$th mutual cores of $M_1$ with respect to $M_2$ and of $M_2$ with respect to $M_1$, respectively. Put $(M_1,M_2)^{1}=(M_1\cap M_2)_{M_1}$ and $(M_2,M_1)^{1}=(M_1\cap M_2)_{M_2}$. For $i\in \mathbb ~N$, assuming that $(M_1,M_2)^{i}$ and $(M_2,M_1)^{i}$ are already defined, put $(M_1,M_2)^{i+1} = ((M_1,M_2)^{i}\cap (M_2,M_1)^{i})_{M_1}$ and $(M_2,M_1)^{i+1} = ((M_1,M_2)^{i}\cap (M_2,M_1)^{i})_{M_2}$. We are interested in the case when $(M_1)_G=(M_2)_G=1$ and $1|(M_1,M_2)^{2}| \leq |(M_2,M_1)^{2}|$. The set of all such triples $(G, M_1, M_2)$ is denoted by $\Pi$. We consider triples from $\Pi$ up to the following equivalence: triples $(G,M_1,M_2)$ and $(G',M'_1,M'_2)$ from $\Pi$ are equivalent if there exists an isomorphism from $G$ to $G'$ mapping $M_1$ to $M'_1$ and $M_2$ to $M'_2$. In the present paper, the following theorem is proved. Theorem. Suppose that $(G, M_1, M_2)\in\Pi$, $L=Soc(G)$ is a simple orthogonal group of degree $\geq 7$, and $M_1\cap L$ is a nonparabolic subgroup of $L$. Then $Soc(G)\cong P\Omega^+_8(r)$, where $r$ is an odd prime, $(M_1, M_2)^3=(M_2,M_1)^3=1$, and one of the following statements holds$:$ $\mathrm (a)$ $r\equiv\pm1 (\mathrm{mod} 8)$; the group $G$ is isomorphic to $P\Omega^+_8(r):{\mathbb Z}_3$ or $P\Omega^+_8(r):S_3$; $(M_1, M_2)^2=Z(O_2(M_1))$ and $(M_2, M_1)^2=Z(O_2(M_2))$ are elementary abelian groups of order $2^3$; $(M_1, M_2)^1=O_2(M_1)$ and $(M_2, M_1)^1=O_2(M_2)$ are special groups of order $2^9$; the group $M_1/O_2(M_1)$ is isomorphic to $L_3(2)\times {\mathbb Z}_3$ or $L_3(2)\times S_3$, respectively; and $M_1\cap M_2$ is a Sylow $2$-subgroup in $M_1$; $\mathrm (b)$ $r\leq 5$; $G/L$ either contains $Outdiag(L)$ or is isomorphic to ${\mathbb Z}_4$; $(M_1, M_2)^2=Z(O_2(M_1\cap L))$ and $(M_2, M_1)^2=Z(O_2(M_2\cap L))$ are elementary abelian groups of order $2^2$; $(M_1, M_2)^1=(O_2(M_1\cap L))'$ and $(M_2, M_1)^1=(O_2(M_2\cap L))'$ are elementary abelian groups of order $2^5$; $O_2(M_1\cap L)/(O_2(M_1\cap L))'$ is an elementary abelian group of order $2^6$; the group $(M_1\cap L)/O_2(M_1\cap L)$ is isomorphic to the group $S_3$; $|M_1:M_1\cap M_2|=24$; $|M_1\cap M_2\cap L|=2^{11}$; and an element of order $3$ from $M_1\cap M_2$ (if it exists) induces on the group $L$ its graph automorphism. In any of cases $\mathrm (a)$ and $\mathrm (b)$, the triples $(G,M_1,M_2)$ from $\Pi$ exist and form one class up to equivalence.
Keywords: finite primitive permutation group, stabilizer of a point, Sims conjecture, almost simple group
Mots-clés : group of orthogonal Lie type.
@article{TIMM_2018_24_3_a11,
     author = {A. S. Kondrat'ev and V. I. Trofimov},
     title = {Stabilizers of vertices of graphs with primitive automorphism groups and a strong version of the {Sims} conjecture. {IV}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {109--132},
     year = {2018},
     volume = {24},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a11/}
}
TY  - JOUR
AU  - A. S. Kondrat'ev
AU  - V. I. Trofimov
TI  - Stabilizers of vertices of graphs with primitive automorphism groups and a strong version of the Sims conjecture. IV
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 109
EP  - 132
VL  - 24
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a11/
LA  - ru
ID  - TIMM_2018_24_3_a11
ER  - 
%0 Journal Article
%A A. S. Kondrat'ev
%A V. I. Trofimov
%T Stabilizers of vertices of graphs with primitive automorphism groups and a strong version of the Sims conjecture. IV
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 109-132
%V 24
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a11/
%G ru
%F TIMM_2018_24_3_a11
A. S. Kondrat'ev; V. I. Trofimov. Stabilizers of vertices of graphs with primitive automorphism groups and a strong version of the Sims conjecture. IV. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 109-132. http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a11/

[1] Burbaki N., Gruppy i algebry Li, Mir, M., 1972, 334 pp.

[2] Kondratev A.S., “Normalizatory silovskikh 2-podgrupp v konechnykh prostykh gruppakh”, Matem. zametki, 78:3 (2005), 368–376

[3] Kondratev A.S., Trofimov V.I., “Stabilizatory vershin grafov i usilennaya versiya gipotezy Simsa”, Dokl. AN, 364:6 (1999), 741–743

[4] Kondratev A.S., Trofimov V.I., “Stabilizatory vershin grafov s primitivnymi gruppami avtomorfizmov i usilennaya versiya gipotezy Simsa. I”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:4 (2014), 143–152 ; “Стабилизаторы вершин графов с примитивными группами автоморфизмов и усиленная версия гипотезы Симса. II”, 22:2 (2016), 177–187 ; “Стабилизаторы вершин графов с примитивными группами автоморфизмов и усиленная версия гипотезы Симса. III”, 22:4 (2016), 163–172

[5] Aschbacher M., “On the maximal subgroups of the finite classical groups”, Invent. Math., 76:3 (1984), 469–514 | DOI

[6] J.H. Conway [et. al.], Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp.

[7] Barry M.J.J., “Large abelian subgroups of Chevalley groups”, J. Austral. Math. Soc. Ser. A, 27:1 (1979), 59–87 | DOI

[8] Bray J.N., Holt D.F., Roney-Dougal C.M., The maximal subgroups of the low-dimensional finite classical groups, London Math. Soc. Lect. Note Ser., 407, Cambridge University Press, Cambridge, 2013, 438 pp.

[9] Carter R.W., Simple groups of Lie type, Wiley, London, 1972, 331 pp.

[10] The GAP Group, GAP - Groups, Algorithms, and Programming, Ver. 4.9.1. 2018 URL: http://www.gap-system.org

[11] Gerono G.C., “Note sur la resolution en nombres entiers et positifs de l'equation $x^m = y^n + 1$”, Nouv. Ann. Math. (2), 9 (1870), 469–471

[12] Gorenstein D., Finite groups, Harper and Row, N. Y., 1968, 528 pp.

[13] Gorenstein D., Lyons R., Solomon R., The classification of the finite simple groups, Number 3. Part I., Math. Surveys Monogr., 40, no. 3, Amer. Math. Soc., Providence, RI, 1998, 420 pp.

[14] Kleidman P.B., “The maximal subgroups of the finite 8-dimensional orthogonal groups $P\Omega^+_8 q)$ and of their automorphism groups”, J. Algebra, 110:1 (1987), 173–242 | DOI

[15] Kleidman P.B., Liebeck M.W., The subgroup structure of the finite classical groups, Cambridge University Press, Sambridge, 1990, 304 pp.

[16] Timmesfeld F.G., Amalgams with rank 2 groups of Lie-type in characteristic 2, University Giessen, Giessen, 1984, 126 pp.