Mots-clés : group of orthogonal Lie type.
@article{TIMM_2018_24_3_a11,
author = {A. S. Kondrat'ev and V. I. Trofimov},
title = {Stabilizers of vertices of graphs with primitive automorphism groups and a strong version of the {Sims} conjecture. {IV}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {109--132},
year = {2018},
volume = {24},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a11/}
}
TY - JOUR AU - A. S. Kondrat'ev AU - V. I. Trofimov TI - Stabilizers of vertices of graphs with primitive automorphism groups and a strong version of the Sims conjecture. IV JO - Trudy Instituta matematiki i mehaniki PY - 2018 SP - 109 EP - 132 VL - 24 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a11/ LA - ru ID - TIMM_2018_24_3_a11 ER -
%0 Journal Article %A A. S. Kondrat'ev %A V. I. Trofimov %T Stabilizers of vertices of graphs with primitive automorphism groups and a strong version of the Sims conjecture. IV %J Trudy Instituta matematiki i mehaniki %D 2018 %P 109-132 %V 24 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a11/ %G ru %F TIMM_2018_24_3_a11
A. S. Kondrat'ev; V. I. Trofimov. Stabilizers of vertices of graphs with primitive automorphism groups and a strong version of the Sims conjecture. IV. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 109-132. http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a11/
[1] Burbaki N., Gruppy i algebry Li, Mir, M., 1972, 334 pp.
[2] Kondratev A.S., “Normalizatory silovskikh 2-podgrupp v konechnykh prostykh gruppakh”, Matem. zametki, 78:3 (2005), 368–376
[3] Kondratev A.S., Trofimov V.I., “Stabilizatory vershin grafov i usilennaya versiya gipotezy Simsa”, Dokl. AN, 364:6 (1999), 741–743
[4] Kondratev A.S., Trofimov V.I., “Stabilizatory vershin grafov s primitivnymi gruppami avtomorfizmov i usilennaya versiya gipotezy Simsa. I”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:4 (2014), 143–152 ; “Стабилизаторы вершин графов с примитивными группами автоморфизмов и усиленная версия гипотезы Симса. II”, 22:2 (2016), 177–187 ; “Стабилизаторы вершин графов с примитивными группами автоморфизмов и усиленная версия гипотезы Симса. III”, 22:4 (2016), 163–172
[5] Aschbacher M., “On the maximal subgroups of the finite classical groups”, Invent. Math., 76:3 (1984), 469–514 | DOI
[6] J.H. Conway [et. al.], Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp.
[7] Barry M.J.J., “Large abelian subgroups of Chevalley groups”, J. Austral. Math. Soc. Ser. A, 27:1 (1979), 59–87 | DOI
[8] Bray J.N., Holt D.F., Roney-Dougal C.M., The maximal subgroups of the low-dimensional finite classical groups, London Math. Soc. Lect. Note Ser., 407, Cambridge University Press, Cambridge, 2013, 438 pp.
[9] Carter R.W., Simple groups of Lie type, Wiley, London, 1972, 331 pp.
[10] The GAP Group, GAP - Groups, Algorithms, and Programming, Ver. 4.9.1. 2018 URL: http://www.gap-system.org
[11] Gerono G.C., “Note sur la resolution en nombres entiers et positifs de l'equation $x^m = y^n + 1$”, Nouv. Ann. Math. (2), 9 (1870), 469–471
[12] Gorenstein D., Finite groups, Harper and Row, N. Y., 1968, 528 pp.
[13] Gorenstein D., Lyons R., Solomon R., The classification of the finite simple groups, Number 3. Part I., Math. Surveys Monogr., 40, no. 3, Amer. Math. Soc., Providence, RI, 1998, 420 pp.
[14] Kleidman P.B., “The maximal subgroups of the finite 8-dimensional orthogonal groups $P\Omega^+_8 q)$ and of their automorphism groups”, J. Algebra, 110:1 (1987), 173–242 | DOI
[15] Kleidman P.B., Liebeck M.W., The subgroup structure of the finite classical groups, Cambridge University Press, Sambridge, 1990, 304 pp.
[16] Timmesfeld F.G., Amalgams with rank 2 groups of Lie-type in characteristic 2, University Giessen, Giessen, 1984, 126 pp.