Highest dimension commutative ideals of a niltriangular subalgebra of a Chevalley algebra over a field
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 98-108
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $N$ be a niltriangular subalgebra of a Chevalley algebra. We study the problem of describing commutative ideals of $N$ of the highest dimension over an arbitrary field. It is proved that $N$ contains a commutative ideal of this dimension, and all such ideals are found. In addition, all maximal commutative ideals of $N$ are described for the types $G_2$ and $F_4$. As a consequence, the highest dimension of commutative subalgebras in all subalgebras of $N$ is found.
Keywords: Chevalley algebra, commutative ideals and highest dimension ideals.
Mots-clés : niltriangular subalgebra
@article{TIMM_2018_24_3_a10,
     author = {E. A. Kirillova and G. S. Suleimanova},
     title = {Highest dimension commutative ideals of a niltriangular subalgebra of a {Chevalley} algebra over a field},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {98--108},
     year = {2018},
     volume = {24},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a10/}
}
TY  - JOUR
AU  - E. A. Kirillova
AU  - G. S. Suleimanova
TI  - Highest dimension commutative ideals of a niltriangular subalgebra of a Chevalley algebra over a field
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 98
EP  - 108
VL  - 24
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a10/
LA  - ru
ID  - TIMM_2018_24_3_a10
ER  - 
%0 Journal Article
%A E. A. Kirillova
%A G. S. Suleimanova
%T Highest dimension commutative ideals of a niltriangular subalgebra of a Chevalley algebra over a field
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 98-108
%V 24
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a10/
%G ru
%F TIMM_2018_24_3_a10
E. A. Kirillova; G. S. Suleimanova. Highest dimension commutative ideals of a niltriangular subalgebra of a Chevalley algebra over a field. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 98-108. http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a10/

[1] Schur I., “Zur theorie der vertauschbaren matrizen”, J. reine und angew. Math., 130 (1905), 66–76

[2] Maltsev A.I., “Kommutativnye podalgebry poluprostykh algebr Li”, Izv. AN SSSR. Ser. matematicheskaya, 9:4 (1945), 291–300

[3] Barry M. J.J., “Large Abelian subgroups of Chevalley groups”, J. Austral. Math. Soc. Ser. A, 27:1 (1979), 59–87 | DOI

[4] Wong W.J., “Abelian unipotent subgroups of finite orthogonal groups”, J. Austral. Math. Soc., Ser. A, 32:2 (1982), 223–245 | DOI

[5] Wong W.J., “Abelian unipotent subgroups of finite unitary and symplectic groups”, J. Austral. Math. Soc., Ser. A, 33:2 (1982), 331–344 | DOI

[6] Kondratev A.S., “Podgruppy konechnykh grupp Shevalle”, Uspekhi mat. nauk, 41:1 (247) (1986), 57–96

[7] Vdovin E.P., “Maksimalnye poryadki abelevykh podgrupp v konechnykh gruppakh Shevalle”, Mat. zametki, 68:1 (2000), 53–76

[8] Vdovin E.P., “Bolshie abelevy unipotentnye podgruppy konechnykh grupp Shevalle”, Algebra i logika, 40:5 (2001), 523–544

[9] Levchuk V.M., Suleimanova G.S., “Extremal and maximal normal abelian subgroups of a maximal unipotent subgroup in groups of Lie type”, J. Algebra, 349:1 (2012), 98–116 | DOI

[10] Levchuk V.M., Suleimanova G.S., “Thompson subgroups and large abelian unipotent subgroups of Lie-type groups”, J. Siberian Federal University. Math. Physics, 6:1 (2013), 64–74

[11] Carter R., Simple groups of Lie type, Wiley and Sons, New York, 1972, 332 pp.

[12] Levchuk V.M., Suleimanova G.S., “A problem of large abelian subgroups and the generalized Mal'cev problem”, Proc. XII Intern. Conf. “Algebra and number theory”, Izd-vo Tulskogo gos. ped. un-ta, Tula, 2014, 108–111

[13] Levchuk V.M., Suleimanova G.S., “The generalized Mal'cev problem on abelian subalgebras of the Chevalley algebras”, Lobachevskii J. Math., 86:4 (2015), 384–388 | DOI

[14] Kravtsova E.A., “Maksimalnye kommutativnye idealy podalgebry NF(K) algebr Li tipa F4”, Molodezh i nauka, sb. materialov Kh Vseros. nauch.-tekhn. konf. studentov, aspirantov i molodykh uchenykh, Sib. federalnyi un-t, Krasnoyarsk, 2014

[15] Burbaki N., Gruppy i algebry Li, gl. IV-VI, Mir, M., 1976, 332 pp.

[16] Levchuk V. M., “Avtomorfizmy unipotentnykh podgrupp grupp Shevalle”, Algebra i logika, 29:3 (1990), 315–338

[17] Levchuk V.M., Litavrin A.V., “Gipertsentralnye avtomorfizmy niltreugolnykh podalgebr algebr Shevalle”, Sib. elektron. mat. izv., 13 (2016), 467–477