Voir la notice du chapitre de livre
Keywords: uniform norm, square of the complex plane, Chebyshev polynomial.
@article{TIMM_2018_24_3_a0,
author = {E. B. Bayramov},
title = {Polynomials least deviating from zero on a square of the complex plane},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {5--15},
year = {2018},
volume = {24},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a0/}
}
E. B. Bayramov. Polynomials least deviating from zero on a square of the complex plane. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 5-15. http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a0/
[1] Chebyshev P.L., “Teoriya mekhanizmov, izvestnykh pod nazvaniem parallelogramov”, Polnoe sobranie sochinenii P. L. Chebysheva, v 5 t., v. 2, Matematicheskii analiz, AN SSSR, M.; L., 1947, 23–51
[2] Smirnov V.I., Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, Nauka, M.; L., 1964, 327 pp.
[3] Milovanovic G.V., Topics in polynomials: Extremal problems, inequalities, zeros, World Scientific Publ. Comp., Singapore, 1994, 821 pp.
[4] Thiran J.-P., “Chebyshev polynomials on circular arcs in the complex plane”, Progress in Approximation Theory, eds. P. Nevai, A. Pinkus, Acad. Press, Boston, 1991, 771–786
[5] Maergoiz L.S., “Mnogochleny Chebysheva s nulevym mnozhestvom na duge okruzhnosti”, Dokl. AN, 426:1 (2009), 26–28
[6] Lukashov A.L., “Ekstremalnye polinomy na dugakh okruzhnosti s nulyami na etikh dugakh”, Izv. NAN Armenii. Matematika, 2009, no. 3, 19–29
[7] Lukashov A.L., “Neravenstva dlya proizvodnykh ratsionalnykh funktsii”, Izv. RAN. Ser. matematicheskaya, 68:3 (2004), 115–138
[8] Arestov V.V., “O trigonometricheskikh polinomakh, naimenee uklonyayuschikhsya ot nulya”, Dokl. AN, 425:6 (2009), 733–736
[9] Arestov V.V., “Trigonometric polynomials that deviate the least from zero in measure and related problems”, J. Approx. Theory, 162:10 (2010), 1852–1878 | DOI
[10] Arestov V.V., “Algebraicheskie mnogochleny, naimenee uklonyayuschiesya ot nulya po mere na otrezke”, Ukr. mat. zhurn., 62:3 (2010), 292–301
[11] Babenko A.G., “Neravenstva slabogo tipa dlya trigonometricheskikh polinomov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 2 (1992), 34–41
[12] Bernshtein S.N., Ekstremalnye svoistva polinomov, ONTI, M., 1937, 203 pp.
[13] Bairamov E.B., “O mnogochlenakh Chebysheva na kvadrate kompleksnoi ploskosti”, Sovremennye problemy matematiki i ee prilozhenii, tez. dokl. Mezhdunar. 49-i mol. shk.-konf., IMM UrO RAN, UrFU, Ekaterinburg, 2018, 72
[14] Goluzin G.M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, uchebnoe posobie, Nauka GITTL, M., L., 1952, 628 pp.
[15] Fekete M., “Uber die Verteilung der Wuzzeln bei gewissen algebraiscnen Gleichugen mit ganzzahligen Koeffizienten”, Math. Z., 17:1 (1923), 228–249
[16] Tobin A.D.,Lloyd N.T., Schwarz-Christoffel mapping: textbook, Cambridge Univ. Press, Cambridge, 2002, 132 pp.
[17] Ivanov V.I., Popov V.Yu., Konformnye otobrazheniya i ikh prilozheniya, Editorial URSS, M., 2002, 324 pp.
[18] Volkovyskii L.I., Lunts G.L., Aramanovich I.G., Sbornik zadach po teorii funktsii kompleksnogo peremennogo, Nauka, M., 1975, 320 pp.
[19] Fikhtengolts G.M., Kurs differentsialnogo i integralnogo ischisleniya, v 3 t., 2, Fizmatlit, M., 2001, 864 pp.