On a singularly perturbed time-optimal control problem with two small parameters
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 76-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we investigate a time-optimal control problem for a singularly perturbed linear autonomous system with two independent small parameters and smooth geometric constraints on the control in the form of a ball. The main difference of this case from the systems with fast and slow variables studied earlier is that here the matrix at the fast variables is a multidimensional analog of the second-order Jordan cell with zero eigenvalue and, thus, does not satisfy the standard condition of asymptotic stability. Continuing the research, we consider initial conditions depending on the second small parameter; in the degenerate case, this resulted in an asymptotic expansion of the solution of a fundamentally different type. The solvability of the problem is proved. We also derive and justify a complete power asymptotic expansion in the sense of Erdelyi of the optimal time and optimal control with respect to a small parameter at the derivatives in the equations of the systems.
Keywords: optimal control, time-optimal control problem, asymptotic expansion, singularly perturbed problem, small parameter.
@article{TIMM_2018_24_2_a8,
     author = {A. R. Danilin and O. O. Kovrizhnykh},
     title = {On a singularly perturbed time-optimal control problem with two small parameters},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {76--92},
     year = {2018},
     volume = {24},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a8/}
}
TY  - JOUR
AU  - A. R. Danilin
AU  - O. O. Kovrizhnykh
TI  - On a singularly perturbed time-optimal control problem with two small parameters
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 76
EP  - 92
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a8/
LA  - ru
ID  - TIMM_2018_24_2_a8
ER  - 
%0 Journal Article
%A A. R. Danilin
%A O. O. Kovrizhnykh
%T On a singularly perturbed time-optimal control problem with two small parameters
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 76-92
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a8/
%G ru
%F TIMM_2018_24_2_a8
A. R. Danilin; O. O. Kovrizhnykh. On a singularly perturbed time-optimal control problem with two small parameters. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 76-92. http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a8/

[1] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mischenko, Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 391 pp. | MR

[2] Krasovskii N.N., Teoriya upravleniya dvizheniem. Lineinye sistemy, Nauka, M., 1968, 476 pp. | MR

[3] Vasileva A.B., Dmitriev M.G., “Singulyarnye vozmuscheniya v zadachakh optimalnogo upravleniya”, Itogi nauki i tekhniki. Matematicheskii analiz, 20, VINITI, M., 1982, 3–77 | MR

[4] Kokotovic P.V., Haddad A.H., “Controllability and time-optimal control of systems with slow and fast modes”, IEEE Trans. Automat. Control, 20:1 (1975), 111–113 | DOI | MR | Zbl

[5] Donchev A., Sistemy optimalnogo upravleniya: Vozmuscheniya, priblizheniya i analiz chuvstvitelnosti, Mir, M., 1987, 156 pp. | MR

[6] Gichev T.R., Donchev A.L., “Skhodimost resheniya lineinoi singulyarno vozmuschennoi zadachi bystrodeistviya”, Prikl. matematika i mekhanika, 43:3 (1979), 466–474 | MR | Zbl

[7] Danilin A.R., Ilin A.M., “O strukture resheniya odnoi vozmuschennoi zadachi bystrodeistviya”, Fundament. i prikl. matematika, 4:3 (1998), 905–926 | MR | Zbl

[8] Danilin A.R., Kovrizhnykh O.O., “O zavisimosti zadachi bystrodeistviya dlya lineinoi sistemy ot dvukh malykh parametrov”, Vest. ChelGU. Matematika, mekhanika, informatika, 2011, no. 27, 46–60

[9] Danilin A.R., Kovrizhnykh O.O., “O zadache upravleniya tochkoi maloi massy v srede bez soprotivleniya”, Dokl. RAN, 451:6 (2013), 612–614 | DOI | Zbl

[10] Erdelui A., Wyman M., “The asymptotic evaluation of certain integrals”, Arsh. Ration. Mech. Anal., 14 (1963), 217–260 | DOI | MR

[11] Li E.B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp. | MR

[12] Danilin A.R., “Asimptotika optimalnogo znacheniya funktsionala kachestva pri bystrostabiliziruyuschemsya nepryamom upravlenii v singulyarnom sluchae”, Zhurn. vychisl. matematiki i mat. fiziki, 46:12 (2006), 2166–2177 | MR

[13] Ilin A.M., Danilin A.R., Asimptoticheskie metody v analize, Fizmatlit, M., 2009, 248 pp.

[14] Kantorovich L.V., Akilov G.P., Funktsionalnyi analiz, Nauka. Gl. red. fiz.-mat. lit., M., 1984, 752 pp. | MR