On the solution of a differential game of managing the investments in an advertising campaign
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 64-75
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a differential game of managing the investments in an advertising campaign for the case of n symmetric players. The problem is solved in the class of positional strategies both for the cooperative statement, where the players agree on using controls that maximize the total payoff before the game starts, and for the noncooperative statement, in which the Nash equilibrium is used as a solution. It is shown that the solution of the problem is not unique in both cases. One candidate function is found by means of a detailed analysis. Then the solution is chosen with the use of an economic criterion described by Bass, Krishnamoorthy, Prasad, and Sethi in 2005. The solutions chosen earlier are in complete agreement with the choice with respect to the economic criterion.
Keywords: non-zero-sum differential games, Nash equiiibrium, advertising model.
@article{TIMM_2018_24_2_a7,
     author = {E. V. Gromova and D. Gromov and Yu. E. Lakhina},
     title = {On the solution of a differential game of managing the investments in an advertising campaign},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {64--75},
     year = {2018},
     volume = {24},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a7/}
}
TY  - JOUR
AU  - E. V. Gromova
AU  - D. Gromov
AU  - Yu. E. Lakhina
TI  - On the solution of a differential game of managing the investments in an advertising campaign
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 64
EP  - 75
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a7/
LA  - ru
ID  - TIMM_2018_24_2_a7
ER  - 
%0 Journal Article
%A E. V. Gromova
%A D. Gromov
%A Yu. E. Lakhina
%T On the solution of a differential game of managing the investments in an advertising campaign
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 64-75
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a7/
%G ru
%F TIMM_2018_24_2_a7
E. V. Gromova; D. Gromov; Yu. E. Lakhina. On the solution of a differential game of managing the investments in an advertising campaign. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 64-75. http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a7/

[1] Aleksandrov A.G., Optimalnye i adaptivnye sistemy, uch. posob., Vyssh. shk., M., 1989, 263 pp.

[2] Bagno A.L., Tarasev A.M., “Svoistva funktsii tseny v zadachakh optimalnogo upravleniya s beskonechnym gorizontom”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyut. nauki, 26:1 (2016), 3–14 | DOI | MR | Zbl

[3] Bellman R., Dinamicheskoe programmirovanie, I.L., M., 1960, 400 pp. | MR

[4] Zhukovskii V.I., Chikrii A.A., Lineino-kvadratichnye differentsialnye igry, Izd-vo Naukovaya Dumka, Kiev, 1994, 320 pp.

[5] Zhukovskii V.I., Vvedenie v differentsialnye igry pri neopredelennosti, Mezhdunar. NII Problem upravleniya, M., 1997, 446 pp.

[6] Zenkevich N., Petrosyan L., Yang D., Dinamicheskie igry i ikh prilozheniya v menedzhmente, Izd-vo Vyssh. shk. menedzhmenta, SPb, 2009, 415 pp.

[7] Kleimenov A.F., Neantagonisticheskie pozitsionnye differentsialnye igry, Nauka. Izd-vo URO, Ekaterinburg, 1993, 185 pp. | MR

[8] Kostyunin S.Yu., Shevkoplyas E.V., “Ob uproschenii integralnogo vyigrysha v differentsialnykh igrakh so sluchainoi prodolzhitelnostyu”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. matematika. Informatika. Protsessy upravleniya, 2011, no. 4, 47–56

[9] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[10] Petrosyan L.A., Danilov N.N., Kooperativnye differentsialnye igry i ikh prilozheniya, Izd-vo Tomsk. un-ta, Tomsk, 1985, 273 pp. | MR

[11] Petrosyan L.A., Zenkevich N.A., Shevkoplyas E.V., Teoriya igr, BKhV-Peterburg, SPb, 2012, 424 pp.

[12] Petrosyan L.A., Shevkoplyas E.V., “Kooperativnye differentsialnye igry so sluchainoi prodolzhitelnostyu”, Vestn. S.-Peterburg. un-ta. Ser. 1: Matematika, mekhanika, astronomiya, 2000, no. 4, 14–18 | Zbl

[13] Khlopin D.V., “Tauberova teorema dlya differentsialnykh igr”, Mat. teoriya igr i ee prilozheniya, 7:1 (2015), 92–120 | MR | Zbl

[14] Shevkoplyas E.V., “Optimalnye resheniya v differentsialnykh igrakh so sluchainoi prodolzhitelnostyu”, Tr. Mezhdunar. konf. po mat. teorii upravleniya i mekhanike (Suzdal, 3-7 iyulya 2009), Sovremen. matematika. Fundament. napravleniya, 42, M., 2011, 235–243

[15] E.J. Dockner, S. Jorgensen, N.V. Long, G. Sorger, Differential games in economics and management science, Cambridge University Press, Cambridge, 2000, 396 pp. | DOI | MR | Zbl

[16] Basar T., Olsder G.J., Dynamic noncooperative game theory, Classics Appl. Math., 2nd ed., SIAM, Philadelphia, 1999, 511 pp. | DOI | MR | Zbl

[17] Fershtman C., “Goodwill and market shares in oligopoly”, Economica, 51 (1984), 271–281 | DOI

[18] Garcia-Meza M.A., Gromova E.V., Lopez-Barrientos J.D., “Stable marketing cooperation in a differential game for an oligopoly”, Int. Game Theory Rev., 1750028 | DOI

[19] F.M. Bass, A. Krishnamoorthy, A. Prasad, S.P. Sethi, “Generic and brand advertising strategies in a dynamic duopoly”, Mark. Sci., 24:4 (2005), 556–568 | DOI

[20] Jorgensen S., Gromova E.V., “Sustaining cooperation in a differential game of advertising goodwill accumulation”, Eur. J. Oper. Res., 254:1 (2016), 294–303 | DOI | MR | Zbl

[21] Jorgensen S., Zaccour G., Differential games in marketing, Springer Science; Business Media, N Y, 2004, 159 pp.

[22] Huang, J., Leng M., Liang L., “Recent developments in dynamic advertising research”, European J. Oper. Res., 220:3 (2012), 591–609 | DOI | MR | Zbl

[23] Marin-Solano J., Shevkoplyas E.V., “Non-constant discounting and differential games with random time horizon”, Automatica, 47:12 (2011), 2626–2638 | DOI | MR | Zbl

[24] Nair A., Narasimhan R., “Dynamics of competing with quality- and advertising-based goodwill”, European J. Operational Research, 175:1 (2006), 462–474 | DOI | MR | Zbl

[25] Nerlove M., Arrow K.J., “Optimal advertising policy under dynamic conditions”, Economica, 29:114 (1962), 129–142 | DOI

[26] Ramsey F.P., “A mathematical theory of saving”, Economic J., 38:152 (1928), 543–559 | DOI

[27] Reynolds S.S., “Dynamic oligopoly with capacity adjustment costs”, J. Economic Dynamics Control, 15 (1991), 491–514 | DOI | MR | Zbl