Automorphisms of a distance-regular graph with intersection array {35, 32, 28; 1, 4, 8}
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 54-63
Voir la notice de l'article provenant de la source Math-Net.Ru
We continue the study of automorphisms of distance-regular locally cyclic graphs with at most 4096 vertices (the intersection arrays of such graphs were found earlier by A.A. Makhnev and M.S. Nirova). Let $\Gamma$ be a distance-regular graph with intersection array $\{35,32,28;1,4,8\}$. Then it has eigenvalue $\theta_2=-1$ and the graph $\bar \Gamma_3$ is pseudogeometric for the net $pG_8(35,8)$ and has parameters $(1296,315,90,72)$. We study possible automorphisms of such graphs. In particular, for a graph $\Gamma$ with intersection array $\{35,32,28;1,4,8\}$ and $G={\rm Aut}(\Gamma)$, it is proved that $\pi(G)\subseteq \{2,3,5,7\}$. Further, if a nonsolvable group $G={\rm Aut}(\Gamma)$ acts transitively on the vertex set of a graph with intersection array $\{35,32,28;1,4,8\}$ and $\bar T$ is the socle of the group $\bar G=G/S(G)$, then $G=S(G)G_a$, $\bar T_a\cong A_5$, and $\bar T_{a,b}\cong A_4$ for some vertices $a\in \Gamma$ and $b\in [a]$.
Keywords:
strongly regular graph, distance-regular graph
Mots-clés : graph automorphism.
Mots-clés : graph automorphism.
@article{TIMM_2018_24_2_a6,
author = {M. P. Golubyatnikov},
title = {Automorphisms of a distance-regular graph with intersection array {35, 32, 28; 1, 4, 8}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {54--63},
publisher = {mathdoc},
volume = {24},
number = {2},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a6/}
}
TY - JOUR
AU - M. P. Golubyatnikov
TI - Automorphisms of a distance-regular graph with intersection array {35, 32, 28; 1, 4, 8}
JO - Trudy Instituta matematiki i mehaniki
PY - 2018
SP - 54
EP - 63
VL - 24
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a6/
LA - ru
ID - TIMM_2018_24_2_a6
ER -
M. P. Golubyatnikov. Automorphisms of a distance-regular graph with intersection array {35, 32, 28; 1, 4, 8}. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 54-63. http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a6/