Automorphisms of a distance-regular graph with intersection array 35, 32, 28; 1, 4, 8
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 54-63
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We continue the study of automorphisms of distance-regular locally cyclic graphs with at most 4096 vertices (the intersection arrays of such graphs were found earlier by A.A. Makhnev and M.S. Nirova). Let $\Gamma$ be a distance-regular graph with intersection array $\{35,32,28;1,4,8\}$. Then it has eigenvalue $\theta_2=-1$ and the graph $\bar \Gamma_3$ is pseudogeometric for the net $pG_8(35,8)$ and has parameters $(1296,315,90,72)$. We study possible automorphisms of such graphs. In particular, for a graph $\Gamma$ with intersection array $\{35,32,28;1,4,8\}$ and $G={\rm Aut}(\Gamma)$, it is proved that $\pi(G)\subseteq \{2,3,5,7\}$. Further, if a nonsolvable group $G={\rm Aut}(\Gamma)$ acts transitively on the vertex set of a graph with intersection array $\{35,32,28;1,4,8\}$ and $\bar T$ is the socle of the group $\bar G=G/S(G)$, then $G=S(G)G_a$, $\bar T_a\cong A_5$, and $\bar T_{a,b}\cong A_4$ for some vertices $a\in \Gamma$ and $b\in [a]$.
Keywords: strongly regular graph, distance-regular graph
Mots-clés : graph automorphism.
@article{TIMM_2018_24_2_a6,
     author = {M. P. Golubyatnikov},
     title = {Automorphisms of a distance-regular graph with intersection array 35, 32, 28; 1, 4, 8},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {54--63},
     year = {2018},
     volume = {24},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a6/}
}
TY  - JOUR
AU  - M. P. Golubyatnikov
TI  - Automorphisms of a distance-regular graph with intersection array 35, 32, 28; 1, 4, 8
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 54
EP  - 63
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a6/
LA  - ru
ID  - TIMM_2018_24_2_a6
ER  - 
%0 Journal Article
%A M. P. Golubyatnikov
%T Automorphisms of a distance-regular graph with intersection array 35, 32, 28; 1, 4, 8
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 54-63
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a6/
%G ru
%F TIMM_2018_24_2_a6
M. P. Golubyatnikov. Automorphisms of a distance-regular graph with intersection array 35, 32, 28; 1, 4, 8. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 54-63. http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a6/

[1] Makhnev A.A., Nirova M.S., “On distance-regular graphs with $\lambda = 2$”, J. Siberian Federal Univ., 7:2 (2014), 204–210

[2] Makhnev A.A., Paduchikh D.V., “O gruppe avtomorfizmov distantsionno regulyarnogo grafa s massivom peresechenii {24,21,3;1,3,18}”, Algebra i logika, 51:4 (2012), 476–495 | MR | Zbl

[3] Makhnev A.A., Nirova M.S., “On automorphisms of a distance-regular graph with intersection array {51,48,8;1,4,36}”, Dokl. Math., 87:3 (2013), 269–273 | DOI | MR | Zbl

[4] Makhnev A.A., Paduchikh D.V., “Automorphisms of a distance-regular graph with intersection array {18,15,9;1,1,10}”, Commun. Math. Stat., 3:4 (2015), 527–534 | DOI | MR | Zbl

[5] J.H. Conway [et. al.], Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | Zbl

[6] Brouwer A.E., Cohen A.M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin; Heidelberg; N Y, 1989, 495 pp. | MR | Zbl

[7] Cameron P.J., Permutation groups, London Math Soc. Student Texts, 45, Cambridge Univ. Press, Cambridge, 1999, 232 pp. | MR | Zbl

[8] Gavrilyuk A.L., Makhnev A.A., “Ob avtomorfizmakh distantsionno regulyarnykh grafov s massivami peresechenii {56,45,1;1,9,56}”, Dokl. AN, 432:5 (2010), 583–587 | Zbl

[9] Behbahani M., Lam C., “Strongly regular graphs with nontrivial automorphisms”, Discrete Math., 311:2–3 (2011), 132–144 | DOI | MR | Zbl

[10] Brouwer A., Haemers W., “The Gewirtz graph: an exercise in the theory of graph spectra”, Europ. J. Comb., 14:5 (1993), 397–407 | DOI | MR | Zbl

[11] Zavarnitsine A.V., “Finite simple groups with narrow prime spectrum”, Sib. Electronic Math. Reports, 6 (2009), 1–12 | MR | Zbl