Voir la notice du chapitre de livre
@article{TIMM_2018_24_2_a5,
author = {D. I. Borisov},
title = {Gaps in the spectrum of the {Laplacian} in a band with periodic delta interaction},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {46--53},
year = {2018},
volume = {24},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a5/}
}
D. I. Borisov. Gaps in the spectrum of the Laplacian in a band with periodic delta interaction. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 46-53. http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a5/
[1] Borisov D.I., “O lakunakh v nizhnei chasti spektra periodicheskogo magnitnogo operatora v polose”, Sovremennaya matematika. Fundamentalnye napravleniya, 63:3 (2017), 373–391 | DOI
[2] Skriganov M.M., “Geometricheskie i arifmeticheskie metody v spektralnoi teorii mnogomernykh periodicheskikh operatorov”, Tr. MIAN SSSR, 171, 1985, 3–122
[3] Beeken C.B.E., Periodic Schrödinger operators in dimension two: constant magnetic fields and boundary value problems, PhD thesis, University of Sussex, Brighton, 2002, 118 pp.
[4] Borisov D., Cardone G., “Homogenization of the planar waveguide with frequently alternating boundary conditions”, J. Phys. A. Math. Gen., 42:36 (2009), 365205 | DOI | MR | Zbl
[5] Borisov D., Bunoiu R., Cardone G., “On a waveguide with frequently alternating boundary conditions: homogenized Neumann condition”, Ann. H. Poincaré, 11:8 (2010), 1591–1627 | DOI | MR | Zbl
[6] Borisov D., Bunoiu R., Cardone G., “Waveguide with non-periodically alternating Dirichlet and Robin conditions: homogenization and asymptotics”, Zeit. Angew. Math. Phys., 64:3 (2013), 439–472 | DOI | MR | Zbl
[7] Dahlberg B.E.J., Trubowitz E., “A remark on two dimensional periodic potentials”, Comment. Math. Helvetici, 57:1 (1982), 130–134 | DOI | MR | Zbl
[8] Karpeshina Y., “Spectral properties of the periodic magnetic Schrödinger operator in the high-energy region. Two-dimensional case”, Comm. Math. Phys., 251:3 (2004), 473–514 | DOI | MR | Zbl
[9] Mohamed A., “Asymptotic of the density of states for the Schrödinger operator with periodic electromagnetic potential”, J. Math. Phys., 38:8 (1997), 4023–4051 | DOI | MR | Zbl
[10] Parnovski L., “Bethe-Sommerfeld conjecture”, Ann. H. Poincaré, 9:3 (2008), 457–508 | DOI | MR | Zbl
[11] Parnovski L., Sobolev A.V., “Bethe-Sommerfeld conjecture for periodic operators with strong perturbations”, Invent. Math., 181:3 (2010), 467–540 | DOI | MR | Zbl