Gaps in the spectrum of the Laplacian in a band with periodic delta interaction
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 46-53
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the Laplace operator in an infinite planar strip with a periodic delta interaction. The width of the strip is fixed and for simplicity is chosen equal to $\pi$. The delta interaction is introduced on a periodic system of curves. Each curve consists of a finite number of segments, each having smoothness $C^1$. The curves are supposed to be strictly internal and do not intersect the boundaries of the strip. The period of their location is $2\varepsilon\pi$, where $\varepsilon$ is a sufficiently small number. The function describing the delta interaction is also periodic on the system of curves and is assumed to be bounded and measurable. The main result is the following fact. If $\varepsilon\leqslant \varepsilon_0$, where $\varepsilon_0$ is a certain explicitly calculated number and the norm of the function describing the delta interaction is smaller than some explicit constant, then a lower part of the spectrum of the operator has no internal gaps. The lower part is understood as the band of the spectrum until some point, which is explicitly calculated in terms of the parameter $\varepsilon$ as a rather simple function. This result can be considered as a first step to the proof of the strengthened Bethe-Sommerfeld conjecture on the complete absence of gaps in the spectrum of the operator for a sufficiently small period of location of delta interactions.
Keywords: periodic operator, Laplacian, delta interaction, band spectrum, absence of gaps.
@article{TIMM_2018_24_2_a5,
     author = {D. I. Borisov},
     title = {Gaps in the spectrum of the {Laplacian} in a band with periodic delta interaction},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {46--53},
     year = {2018},
     volume = {24},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a5/}
}
TY  - JOUR
AU  - D. I. Borisov
TI  - Gaps in the spectrum of the Laplacian in a band with periodic delta interaction
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 46
EP  - 53
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a5/
LA  - ru
ID  - TIMM_2018_24_2_a5
ER  - 
%0 Journal Article
%A D. I. Borisov
%T Gaps in the spectrum of the Laplacian in a band with periodic delta interaction
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 46-53
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a5/
%G ru
%F TIMM_2018_24_2_a5
D. I. Borisov. Gaps in the spectrum of the Laplacian in a band with periodic delta interaction. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 46-53. http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a5/

[1] Borisov D.I., “O lakunakh v nizhnei chasti spektra periodicheskogo magnitnogo operatora v polose”, Sovremennaya matematika. Fundamentalnye napravleniya, 63:3 (2017), 373–391 | DOI

[2] Skriganov M.M., “Geometricheskie i arifmeticheskie metody v spektralnoi teorii mnogomernykh periodicheskikh operatorov”, Tr. MIAN SSSR, 171, 1985, 3–122

[3] Beeken C.B.E., Periodic Schrödinger operators in dimension two: constant magnetic fields and boundary value problems, PhD thesis, University of Sussex, Brighton, 2002, 118 pp.

[4] Borisov D., Cardone G., “Homogenization of the planar waveguide with frequently alternating boundary conditions”, J. Phys. A. Math. Gen., 42:36 (2009), 365205 | DOI | MR | Zbl

[5] Borisov D., Bunoiu R., Cardone G., “On a waveguide with frequently alternating boundary conditions: homogenized Neumann condition”, Ann. H. Poincaré, 11:8 (2010), 1591–1627 | DOI | MR | Zbl

[6] Borisov D., Bunoiu R., Cardone G., “Waveguide with non-periodically alternating Dirichlet and Robin conditions: homogenization and asymptotics”, Zeit. Angew. Math. Phys., 64:3 (2013), 439–472 | DOI | MR | Zbl

[7] Dahlberg B.E.J., Trubowitz E., “A remark on two dimensional periodic potentials”, Comment. Math. Helvetici, 57:1 (1982), 130–134 | DOI | MR | Zbl

[8] Karpeshina Y., “Spectral properties of the periodic magnetic Schrödinger operator in the high-energy region. Two-dimensional case”, Comm. Math. Phys., 251:3 (2004), 473–514 | DOI | MR | Zbl

[9] Mohamed A., “Asymptotic of the density of states for the Schrödinger operator with periodic electromagnetic potential”, J. Math. Phys., 38:8 (1997), 4023–4051 | DOI | MR | Zbl

[10] Parnovski L., “Bethe-Sommerfeld conjecture”, Ann. H. Poincaré, 9:3 (2008), 457–508 | DOI | MR | Zbl

[11] Parnovski L., Sobolev A.V., “Bethe-Sommerfeld conjecture for periodic operators with strong perturbations”, Invent. Math., 181:3 (2010), 467–540 | DOI | MR | Zbl