Voir la notice du chapitre de livre
Mots-clés : graph automorphism.
@article{TIMM_2018_24_2_a3,
author = {I. N. Belousov},
title = {Codes in {Shilla} distance-regular graphs},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {34--39},
year = {2018},
volume = {24},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a3/}
}
I. N. Belousov. Codes in Shilla distance-regular graphs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 34-39. http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a3/
[1] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin; Heidelberg; N Y, 1989, 495 pp. | MR | Zbl
[2] Koolen J.H., Park J., “Shilla distance-regular graphs”, Europ. J. Comb., 31:8 (2010), 2064–2073 | DOI | MR | Zbl
[3] Vidali J., Kode v razdaljno regularnih grafih: Doctorska dissertacija, Univerza v Ljubljani, Ljubljana, 2013, 155 pp.
[4] Jurisic A., Vidali J., “Extremal 1-codes in distance-regular graphs of diameter 3”, Des. Codes Cryptogr., 65:1–2 (2012), 29–47 | DOI | MR | Zbl
[5] Makhnev A. A., Nirova M. S., “Distantsionno regulyarnye grafy Shilla s $b_2=c_2$”, Mat. zametki, 103:5 (2018), 730–744 | DOI | MR
[6] Belousov I. N., Makhnev A. A., “K teorii grafov Shilla s $b_2=c_2$”, Sib. elektron. mat. izvestiya, 14 (2017), 1135–1146 | DOI | MR
[7] Koolen J.H., Park J., Yu H., “An inequality involving the second largest and smallest eigenvalue of a distance-regular graph”, Linear Algebra Appl., 434:12 (2011), 2404–2412 | DOI | MR | Zbl