Voir la notice du chapitre de livre
Keywords: local splines, boundary conditions.
@article{TIMM_2018_24_2_a26,
author = {V. T. Shevaldin},
title = {On integral {Lebesgue} constants of local splines with uniform knots},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {290--297},
year = {2018},
volume = {24},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a26/}
}
V. T. Shevaldin. On integral Lebesgue constants of local splines with uniform knots. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 290-297. http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a26/
[1] Shevaldin V.T., Approksimatsiya lokalnymi splainami, Izd-vo UrO RAN, Ekaterinburg, 2014, 198 pp.
[2] Shevaldin V.T., Shevaldina O.Ya., “Konstanta Lebega lokalnykh kubicheskikh splainov s ravnootstoyaschimi uzlami”, Sib. zhurn. vychisl. matematiki, 20:4 (2017), 445–451 | DOI
[3] Subbotin Yu.N., Telyakovskii S.A., “Normy v $L$ periodicheskikh interpolyatsionnykh splainov s ravnootstoyaschimi uzlami”, Mat. zametki, 74:1 (2003), 108–117 | DOI | MR | Zbl
[4] Guin Shaohui, Liu Yongping, “Asymptotic estimate for the Lebesgue constant of cardinal $\cal L$-spline interpolation operator”, East J. of Approx., 13:3 (2007), 331–355 | MR
[5] Subbotin Yu.N., “Nasledovanie svoistv monotonnosti i vypuklosti pri lokalnoi approksimatsii”, Zhurn. vychisl. matematiki i mat. fiziki, 33:7 (1993), 996–1003 | MR | Zbl
[6] Kostousov K.V., Shevaldin V.T., “Approksimatsiya lokalnymi trigonometricheskimi splainami”, Mat. zametki, 77:3 (2005), 354–363 | DOI | MR | Zbl
[7] Kostousov K.V., Shevaldin V.T., “Approximation by local exponential splines”, Proc. Steklov Inst. Math., Suppl. 1, 2004, S147-S157 | MR | Zbl