On Hilbert-Poincare series of associative nilalgebras generated by two nilelements
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 243-255 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The coefficients of the Hilbert-Poincare series $H_A(t)=\sum_{k=0}^{\infty}a_kt^k$ of a graded associative algebra $A=\langle\langle x,y|x^m,y^n\rangle\rangle$ with unit are calculated (Theorems 1 and 2). There are no other constraints on the algebra. The problem is the combinatorial search for compact formulas (and asymptotics) for the number of associative words of fixed length in the alphabet $\{x,y\}$ not containing the subwords $x^m$ and $y^n$. Working with recurrence relations, generating functions, and combinatorial sums, we use operations with power series (of one variable) and elements of the theory of residues for complex variables. These methods supplement the Golod-Shafarevich theorem, which is inapplicable for $d=2$ and $m,n\leq9$. In connection with Aleshin, Grigorchuk, and Gupta groups, we pay a special attention to the small values $m,n\leq4$. An asymptotic expansion of the coefficients $a_k$ is found, and $a_k$ are compared with the coefficients of the series $\sum_{k=0}^{\infty}c_kt^k$, which is the inverse of the polynomial $1-2t+t^m+t^n$. We also consider the cases of negative coefficients $c_k$ and inequalities $c_k>a_k$, which are excluded by the conditions of the Golod-Shafarevich theorem. However, additional relations sufficient for obtaining infinite-dimensional nilalgebras cannot be found yet because the obtained formulas are rather cumbersome.
Mots-clés : associative nilalgebra
Keywords: Hilbert-Poincare series.
@article{TIMM_2018_24_2_a22,
     author = {A. I. Sozutov and G. P. Egorychev and I. O. Aleksandrova},
     title = {On {Hilbert-Poincare} series of associative nilalgebras generated by two nilelements},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {243--255},
     year = {2018},
     volume = {24},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a22/}
}
TY  - JOUR
AU  - A. I. Sozutov
AU  - G. P. Egorychev
AU  - I. O. Aleksandrova
TI  - On Hilbert-Poincare series of associative nilalgebras generated by two nilelements
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 243
EP  - 255
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a22/
LA  - ru
ID  - TIMM_2018_24_2_a22
ER  - 
%0 Journal Article
%A A. I. Sozutov
%A G. P. Egorychev
%A I. O. Aleksandrova
%T On Hilbert-Poincare series of associative nilalgebras generated by two nilelements
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 243-255
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a22/
%G ru
%F TIMM_2018_24_2_a22
A. I. Sozutov; G. P. Egorychev; I. O. Aleksandrova. On Hilbert-Poincare series of associative nilalgebras generated by two nilelements. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 243-255. http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a22/

[1] Ufnarovskii V.A., “Kombinatornye i asimptoticheskie metody v algebre”, Itogi nauki i tekhniki. Sovrem. problemy matematiki Fundam. napravleniya, 57, VINITI, 1990, 5–178 | MR

[2] Golod E.S., Shafarevich I.R., “O bashne polei klassov”, Izv. AN SSSR. Cer. matematicheskaya, 28:2 (1964), 261–272 | Zbl

[3] Golod E.S., “O nil-algebrakh i finitno approksimiruemykh p-gruppakh”, Izv. AN SSSR. Cer. matematicheskaya, 28:2 (1964), 273–276

[4] Kherstein I., Nekommutativnye koltsa, Mir, M., 1982, 190 pp. | MR

[5] Kargapolov M.I., Merzlyakov Yu.I., Osnovy teorii grupp, Nauka, M., 1982, 288 pp. | MR

[6] Aleshin S. V., “K probleme Bernsaida o periodicheskikh gruppakh”, Mat. zametki, 32:3 (1972), 319–328 | MR

[7] Grigorchuk R.I., “K probleme Bernsaida o periodicheskikh gruppakh”, Funkts. analiz i ego prilozheniya, 14:1 (1980), 53–54 | MR | Zbl

[8] Gupta N., Sidki S., “Some infinite p-groups”, Algebra i logika, 22:5 (1983), 584–586 | MR

[9] Egorychev G.P., Integralnoe predstavlenie i vychislenie kombinatornykh summ, Nauka, SO AN SSSR. Novosibirsk, 1979, 286 pp. | MR

[10] Kourovskaya tetrad: Nereshennye voprosy teorii grupp, 15-e izdanie, Novosibirsk, 2002

[11] Shunkov V.P., “Ob odnom klasse p-grupp”, Algebra i logika, 9:4 (1970), 484–496 | MR

[12] Sozutov A.I., Aleksandrova I.O., “O nekotorykh svoistvakh prisoedinennykh grupp assotsiativnykh nilalgebr”, Algebra i logika: teoriya i prilozheniya, tez. dokl. Mezhdunarod. konf., Sib. federal. un-t, Krasnoyarsk, 2013, 12–14

[13] Sozutov A.I., Alexandrova I.O., “On some propeties of adjoint groups of associative nil algebras”, Zhurnal Sib. federal. un-ta. Matematika i fizika, 10:4 (2017), 503–508 | MR

[14] Lando S.K., Lektsii o proizvodyaschikh funktsiyakh, ucheb., MTsNMO, M., 2007, 144 pp.

[15] Shabat B.V., Vvedenie v kompleksnyi analiz, ucheb., v. 1, Funktsii odnogo peremennogo, Nauka, M., 1985, 336 pp. | MR