Study of test Volterra equations of the first kind in integral models of developing systems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 24-33
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Volterra equations of the first kind are an important element of integral models of developing systems. They describe the balance between the required level of system development and the possibility of achieving this level by a set of elements of the system belonging to different age groups. The solution to the balance equation, which is continuous on any finite time interval, inevitably becomes unstable over time for some relations between the efficiency coefficients of the elements (kernels of the corresponding operators). The simplest test equations allow us to understand the specifics of this phenomenon. Such equations were introduced earlier for the case of two age groups, and we generalize them to the case of three age groups of elements and investigate the obtained equations. The main theoretical result, formulated in Theorem 2, is a majorant estimate for a grid node of any quadrature method for the numerical solution of a test equation where the error of the grid solution exceeds for the first time a given arbitrarily large threshold in the case of using a computer with a fixed rounding error. The result is illustrated by calculations for model examples with the use of modified methods of left and middle rectangle. The developed technique can be naturally extended to the case of an arbitrary number of age groups.
Keywords: developing system, three age groups, test Volterra equation of the first kind, numerical solution, instability.
@article{TIMM_2018_24_2_a2,
     author = {A. S. Apartsyn and I. V. Sidler},
     title = {Study of test {Volterra} equations of the first kind in integral models of developing systems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {24--33},
     year = {2018},
     volume = {24},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a2/}
}
TY  - JOUR
AU  - A. S. Apartsyn
AU  - I. V. Sidler
TI  - Study of test Volterra equations of the first kind in integral models of developing systems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 24
EP  - 33
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a2/
LA  - ru
ID  - TIMM_2018_24_2_a2
ER  - 
%0 Journal Article
%A A. S. Apartsyn
%A I. V. Sidler
%T Study of test Volterra equations of the first kind in integral models of developing systems
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 24-33
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a2/
%G ru
%F TIMM_2018_24_2_a2
A. S. Apartsyn; I. V. Sidler. Study of test Volterra equations of the first kind in integral models of developing systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 24-33. http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a2/

[1] Glushkov V.M., “Ob odnom klasse dinamicheskikh makroekonomicheskikh modelei”, Upravlyayuschie sistemy i mashiny, 1977, no. 2, 3–6

[2] Glushkov V.M., Ivanov V.V., Yanenko V.M., Modelirovanie razvivayuschikhsya sistem, Nauka, M., 1983, 350 pp. | MR

[3] Yatsenko Yu.P., Integralnye modeli sistem s upravlyaemoi pamyatyu, Nauk. dumka, Kiev, 1991, 218 pp. | MR

[4] Hritonenko N., Yatsenko Yu., Applied mathematical modelling of engineering problems, Kluwer Acad. Publ., Dortrecht, 2003, 308 pp. | DOI | MR | Zbl

[5] Apartsin A.S., Neklassicheskie uravneniya Volterra I roda: teoriya i chislennye metody, Nauka, Novosibirsk, 1999, 193 pp.

[6] Messina E., Russo E., Vecchio A., “A stable numerical method for Volterra integral equations with discontinuous kernel”, J. Math. Anal. Appl., 337:2 (2008), 1383–1393 | DOI | MR | Zbl

[7] Apartsin A.S., Sidler I.V., “Primenenie neklassicheskikh uravnenii Volterra I roda dlya modelirovaniya razvivayuschikhsya sistem”, Avtomatika i telemekhanika, 2013, no. 6, 3–16 | MR | Zbl

[8] A.S. Apartsin, E.V. Markova, I.V. Sidler, V.V. Trufanov, “Integralnye modeli dlya razrabotki strategii tekhnicheskogo perevooruzheniya generiruyuschikh moschnostei”, Elektrichestvo, 2017, no. 3, 4–11 | DOI

[9] Kantorovich L.V., Akilov G.P., Funktsionalnyi analiz, Nauka, M., 1977, 752 pp. | MR

[10] Apartsin A.S., “K teorii integralnykh uravnenii Volterra I roda s razryvnymi yadrami”, Zhurn. vychisl. matematiki i mat. fiziki, 56:5 (2016), 824–839 | DOI | MR | Zbl

[11] Apartsin A.S., “Formuly obrascheniya i ikh konechnomernye analogi dlya nekotorykh klassov uravnenii Volterra I roda s razryvnymi yadrami”, Tr. Mezhdunar. konf. “Aktualnye problemy vychislitelnoi i prikladnoi matematiki - 2015”, Elektr. resurs (Novosibirsk, 19-23.10.2015), 1 elektron. opt. disk, Abvei, Novosibirsk, 2015, 62–69

[12] Apartsin A.S., “K issledovaniyu ustoichivosti reshenii testovykh neklassicheskikh uravnenii Volterra I roda”, Sib. elektr. mat. izv., 12:S (2015), 15–20 | DOI

[13] Apartsin A.S., Sidler I.V., “O testovykh uravneniyakh Volterra I roda v integralnykh modelyakh razvivayuschikhsya sistem”, Avtomatika i telemekhanika, 2018, no. 4, 31–45

[14] Brunner H., Van der Houwen P.J., The numerical solution of Volterra equations, CWI Monographs, 3, North-Holland, Amsterdam, 1986, 588 pp. | MR | Zbl

[15] Brunner H., Collocation methods for Volterra integral and related functional differential equations, Cambridge University Press, Cambridge, 2004, 597 pp. | DOI | MR | Zbl

[16] Brunner H., Volterra integral equations: An introduction to theory and applications, Cambridge University Press, Cambridge, 2017, 387 pp. | DOI | MR | Zbl

[17] Apartsin A.S., Sidler I.V., “Chislennoe reshenie uravnenii Volterra I roda v integralnykh modelyakh razvivayuschikhsya sistem”, Sb. tr. Mezhdunar. simp. “Obobschennye postanovki i resheniya zadach upravleniya”, ANO “Izd-vo fiz.-mat. literatury”, M., 2014, 21–25

[18] Apartsin A.S., Sidler I.V., “O chislennom reshenii neklassicheskikh uravnenii Volterra I roda”, Sb. st. IX Mezhdunar. nauch.-tekhn. konf. “Analiticheskie i chislennye metody modelirovaniya estestvennonauchnykh i sotsialnykh problem”, Pedagog. gos. un-t, Penza, 2014, 59–64