On distance-regular graphs with $\theta_2=-1$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 215-228 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let a distance-regular graph $\Gamma$ of diameter 3 have eigenvalue $\theta_2=-1$. Then $\Delta=\bar\Gamma_3$ is a pseudo-geometric graph for $pG_{c_3}(k,b_1/c_2)$ containing $v$ Delsarte cliques $u^\bot$ of order $k+1$. In the case $a_1=0$ we have a partition of the subgraph $\Delta(u)$ by cliques $w^\bot-\{u\}$, where $w\in \Gamma(u)$. If there exists a strongly regular graph with parameters (176,49,12,14) in which neighborhoods of vertices are $7\times 7$-lattices, then there exists a distance-regular graph with intersection array $\{7,6,6;1,1,2\}$. If $\Delta$ contains an $n$-coclique $\{u,u_2,\dots ,u_n\}$, then there are $k_3-(n-1)(a_3+1)$ vertices in $\Gamma_3(u)-\cup_{i=2}^n \Gamma(u_i)$, which yields a new upper bound for the order of a clique in $\Gamma_3$. Moreover, it is proved that distance-regular graphs with intersection arrays $\{44,35,3;1,5,42\}$ and $\{27,20,7;1,4,21\}$ do not exist.
Keywords: distance-regular graph, eigenvalue, strongly regular graph.
@article{TIMM_2018_24_2_a19,
     author = {M. S. Nirova},
     title = {On distance-regular graphs with $\theta_2=-1$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {215--228},
     year = {2018},
     volume = {24},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a19/}
}
TY  - JOUR
AU  - M. S. Nirova
TI  - On distance-regular graphs with $\theta_2=-1$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 215
EP  - 228
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a19/
LA  - ru
ID  - TIMM_2018_24_2_a19
ER  - 
%0 Journal Article
%A M. S. Nirova
%T On distance-regular graphs with $\theta_2=-1$
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 215-228
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a19/
%G ru
%F TIMM_2018_24_2_a19
M. S. Nirova. On distance-regular graphs with $\theta_2=-1$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 215-228. http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a19/

[1] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin; Heidelberg; N Y, 1989, 495 pp. | MR | Zbl

[2] Makhnev A. A., Nirova M. S., “Distantsionno regulyarnye grafy Shilla s $b_2 = c_2$”, Mat. zametki, 103:5 (2018), 730–744 | DOI | MR

[3] Bang S., Koolen J., “Distance-regular graphs of diameter three having eigenvalue -1”, Linear Algebra Appl., 531 (2017), 38–53 URL: http:10.1016/j.laa.2017.05.038 | DOI | MR | Zbl

[4] Brouwer A. E., “Polarities of G. Higman's symmetric design and a strongly regular graph on 176 vertices”, Aequationes Math., 25 (1982), 77–82 | DOI | MR | Zbl

[5] Hobart S. A., Hughes D. R., “Extended partial geometries: nets and dual nets”, Europ. J. Comb., 11 (1990), 357–372 | DOI | MR | Zbl

[6] Makhnev A. A., “Chastichnye geometrii i ikh rasshireniya”, Uspekhi matem. nauk, 54:5 (1999), 21–72

[7] Brouwer A.E., Haemers W.H., “The Gewirtz graph: an exercize in the theory of graph spectra”, Europ. J. Comb., 14 (1993), 397–407 | DOI | MR | Zbl

[8] Behbahani M., Lam C., “Strongly regular graphs with non-trivial automorphisms”, Discrete Math., 311:2–3 (2011), 132–144 | DOI | MR | Zbl

[9] Cameron P., Permutation groups, London Math. Soc. Student Texts, 45, Cambridge Univ. Press, Cambridge, 1999, 220 pp. | MR | Zbl

[10] Gavrilyuk A.L., Makhnev A.A., “Ob avtomorfizmakh distantsionno regulyarnogo grafa s massivom peresechenii {56,45,1;1,9,56}”, Dokl. RAN, 432:5 (2010), 583–587 | Zbl

[11] Zavarnitsine A.V., “Finite simple groups with narrow prime spectrum”, Sibirean Electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl

[12] Coolsaet K., “Local structure of graph with $\lambda=\mu=2, a_2 = 4$”, Combinatorica, 15 (1995), 481–457 | DOI | MR