@article{TIMM_2018_24_2_a19,
author = {M. S. Nirova},
title = {On distance-regular graphs with $\theta_2=-1$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {215--228},
year = {2018},
volume = {24},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a19/}
}
M. S. Nirova. On distance-regular graphs with $\theta_2=-1$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 215-228. http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a19/
[1] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin; Heidelberg; N Y, 1989, 495 pp. | MR | Zbl
[2] Makhnev A. A., Nirova M. S., “Distantsionno regulyarnye grafy Shilla s $b_2 = c_2$”, Mat. zametki, 103:5 (2018), 730–744 | DOI | MR
[3] Bang S., Koolen J., “Distance-regular graphs of diameter three having eigenvalue -1”, Linear Algebra Appl., 531 (2017), 38–53 URL: http:10.1016/j.laa.2017.05.038 | DOI | MR | Zbl
[4] Brouwer A. E., “Polarities of G. Higman's symmetric design and a strongly regular graph on 176 vertices”, Aequationes Math., 25 (1982), 77–82 | DOI | MR | Zbl
[5] Hobart S. A., Hughes D. R., “Extended partial geometries: nets and dual nets”, Europ. J. Comb., 11 (1990), 357–372 | DOI | MR | Zbl
[6] Makhnev A. A., “Chastichnye geometrii i ikh rasshireniya”, Uspekhi matem. nauk, 54:5 (1999), 21–72
[7] Brouwer A.E., Haemers W.H., “The Gewirtz graph: an exercize in the theory of graph spectra”, Europ. J. Comb., 14 (1993), 397–407 | DOI | MR | Zbl
[8] Behbahani M., Lam C., “Strongly regular graphs with non-trivial automorphisms”, Discrete Math., 311:2–3 (2011), 132–144 | DOI | MR | Zbl
[9] Cameron P., Permutation groups, London Math. Soc. Student Texts, 45, Cambridge Univ. Press, Cambridge, 1999, 220 pp. | MR | Zbl
[10] Gavrilyuk A.L., Makhnev A.A., “Ob avtomorfizmakh distantsionno regulyarnogo grafa s massivom peresechenii {56,45,1;1,9,56}”, Dokl. RAN, 432:5 (2010), 583–587 | Zbl
[11] Zavarnitsine A.V., “Finite simple groups with narrow prime spectrum”, Sibirean Electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl
[12] Coolsaet K., “Local structure of graph with $\lambda=\mu=2, a_2 = 4$”, Combinatorica, 15 (1995), 481–457 | DOI | MR