On the coincidence of the minimax solution and the value function in a time-optimal game with a lifeline
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 200-214
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider time-optimal differential games with a lifeline. In such games, as usual, there is a terminal set to which the first player tries to guide the system as fast as possible, and there is also a set, called a lifeline, such that the second player wins when the system attains this set. The payoff is the result of applying Kruzhkov's change to the time when the system reaches the terminal set. We also consider Hamilton-Jacobi equations corresponding to such games. The existence of a minimax solution of a boundary value problem for a Hamilton-Jacobi type equation is proved. For this we introduce certain strong assumptions on the dynamics of the game near the boundary of the game domain. More exactly, the first and second players can direct the motion of the system to the terminal set and the lifeline, respectively, if the system is near the corresponding set. Under these assumptions, the value function is continuous in the game domain. The coincidence of the value function and the minimax solution of the boundary value problem is proved under the same assumptions.
Keywords: time-optimal differential games with a lifeline, value function, Hamilton-Jacobi equations, minimax solution.
@article{TIMM_2018_24_2_a18,
     author = {N. V. Munts and S. S. Kumkov},
     title = {On the coincidence of the minimax solution and the value function in a time-optimal game with a lifeline},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {200--214},
     year = {2018},
     volume = {24},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a18/}
}
TY  - JOUR
AU  - N. V. Munts
AU  - S. S. Kumkov
TI  - On the coincidence of the minimax solution and the value function in a time-optimal game with a lifeline
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 200
EP  - 214
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a18/
LA  - ru
ID  - TIMM_2018_24_2_a18
ER  - 
%0 Journal Article
%A N. V. Munts
%A S. S. Kumkov
%T On the coincidence of the minimax solution and the value function in a time-optimal game with a lifeline
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 200-214
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a18/
%G ru
%F TIMM_2018_24_2_a18
N. V. Munts; S. S. Kumkov. On the coincidence of the minimax solution and the value function in a time-optimal game with a lifeline. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 200-214. http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a18/

[1] Aizeks R., Differentsialnye igry, Mir, M., 1967, 480 pp. | MR

[2] Petrosjan L. A., “A family of differential survival games in the space $\mathbb R^n$”, Soviet Math. Dokl., 1965, no. 6, 377–380 | MR

[3] Petrosyan L.A., “Dispersionnye poverkhnosti v odnom semeistve igr presledovaniya”, Dokl. AN Armyanskoi SSR, 43:4 (1966), 193–197 | MR | Zbl

[4] Dutkevich Yu.G., Petrosyan L.A., “Igra s “liniei zhizni”. Sluchai $l$-zakhvata”, Vestn. Leningr. un-ta, 1969, no. 13, 31–38 | MR

[5] Petrosyan L.A., Differentsialnye igry presledovaniya, Izd-vo LGU, Leningrad, 1977, 222 pp. | MR

[6] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[7] Krasovskii N.N., Subbotin A.I., Game-theoretical control problems, Springer-Verlag, N Y, 1988, 517 pp. | MR | Zbl

[8] Cardaliaguet P., Quincampoix M., Saint-Pierre P., “Some algorithms for differential games with two players and one target”, RAIRO - Modélisation mathématique et analyse numérique, 28:4 (1994), 441–461 | DOI | MR | Zbl

[9] Cardaliaguet P., Quincampoix M., Saint-Pierre P., “Set-valued numerical analysis for optimal control and differential games”, Stochastic and Differential Games, Annals Internat. Soc. Dynamic Games, 4, eds. eds. M. Bardi, T.E.S. Raghavan, T. Parthasarathy, Birkh$\ddot{\mathrm{a}}$user, Boston, 1999, 177–247 | DOI | MR | Zbl

[10] Cardaliaguet P., Quincampoix M., Saint-Pierre P., “Differential games through viability theory: Old and recent results”, Advances in Dynamic Game Theory, Annals Internat. Soc. Dynamic Games, 9, eds. eds. S. Jorgensen, M. Quincampoix, T.L. Vincent, Birkh$\ddot{\mathrm{a}}$user, Boston, 2007, 3–35 | DOI | MR | Zbl

[11] Subbotin A.I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka. Perspektivy dinamicheskoi optimizatsii, In-t kompyuternykh issledovanii, M.; Izhevsk, 2003, 336 pp.

[12] Munts N.V., Kumkov S.S., “Suschestvovanie funktsii tseny v igre bystrodeistviya s liniei zhizni”, [e-resource], Proc. 47th Internat. Youth School-Conf. “Modern Problems in Mathematics and its Applications”, eds. eds. A.A. Makhnev, S.F. Pravdin, Yekaterinburg, 2016, 94–99 URL: http://ceur-ws.org/Vol-1662/opt6.pdf