Asymptotic confidence interval for a discontinuity point of a probability density function
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 194-199
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the problem of interval estimation of an unknown parameter $\theta\in\Theta\subset R$ of a distribution density $f(x,\theta)$ (with respect to the Lebesgue measure) for a sample $X_1,\dots,X_n$ of large size. It is assumed that the density has a discontinuity of the first kind at the point $x=\theta$. We construct a confidence interval based on a known maximum likelihood estimator $\theta_n^*$ and the distribution function $G(x,\theta)$ found by the authors earlier, which is the limit of the sequence of distribution functions of normalized maximum likelihood estimators\linebreak $n(\theta_n^*-\theta)$. It is proved that the resulting confidence interval is asymptotically exact. We also describe a method for the “fast” calculation of maximum likelihood estimators for a discontinuity point of a density.
Keywords:
estimation of a discontinuity point of a probability density, maximum likelihood estimators, asymptotic confidence interval, limiting distributions of statistical estimators.
@article{TIMM_2018_24_2_a17,
author = {V. E. Mosyagin and N. A. Shvemler},
title = {Asymptotic confidence interval for a discontinuity point of a probability density function},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {194--199},
publisher = {mathdoc},
volume = {24},
number = {2},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a17/}
}
TY - JOUR AU - V. E. Mosyagin AU - N. A. Shvemler TI - Asymptotic confidence interval for a discontinuity point of a probability density function JO - Trudy Instituta matematiki i mehaniki PY - 2018 SP - 194 EP - 199 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a17/ LA - ru ID - TIMM_2018_24_2_a17 ER -
%0 Journal Article %A V. E. Mosyagin %A N. A. Shvemler %T Asymptotic confidence interval for a discontinuity point of a probability density function %J Trudy Instituta matematiki i mehaniki %D 2018 %P 194-199 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a17/ %G ru %F TIMM_2018_24_2_a17
V. E. Mosyagin; N. A. Shvemler. Asymptotic confidence interval for a discontinuity point of a probability density function. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 194-199. http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a17/