Asymptotic confidence interval for a discontinuity point of a probability density function
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 194-199 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the problem of interval estimation of an unknown parameter $\theta\in\Theta\subset R$ of a distribution density $f(x,\theta)$ (with respect to the Lebesgue measure) for a sample $X_1,\dots,X_n$ of large size. It is assumed that the density has a discontinuity of the first kind at the point $x=\theta$. We construct a confidence interval based on a known maximum likelihood estimator $\theta_n^*$ and the distribution function $G(x,\theta)$ found by the authors earlier, which is the limit of the sequence of distribution functions of normalized maximum likelihood estimators\linebreak $n(\theta_n^*-\theta)$. It is proved that the resulting confidence interval is asymptotically exact. We also describe a method for the “fast” calculation of maximum likelihood estimators for a discontinuity point of a density.
Keywords: estimation of a discontinuity point of a probability density, maximum likelihood estimators, asymptotic confidence interval, limiting distributions of statistical estimators.
@article{TIMM_2018_24_2_a17,
     author = {V. E. Mosyagin and N. A. Shvemler},
     title = {Asymptotic confidence interval for a discontinuity point of a probability density function},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {194--199},
     year = {2018},
     volume = {24},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a17/}
}
TY  - JOUR
AU  - V. E. Mosyagin
AU  - N. A. Shvemler
TI  - Asymptotic confidence interval for a discontinuity point of a probability density function
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 194
EP  - 199
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a17/
LA  - ru
ID  - TIMM_2018_24_2_a17
ER  - 
%0 Journal Article
%A V. E. Mosyagin
%A N. A. Shvemler
%T Asymptotic confidence interval for a discontinuity point of a probability density function
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 194-199
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a17/
%G ru
%F TIMM_2018_24_2_a17
V. E. Mosyagin; N. A. Shvemler. Asymptotic confidence interval for a discontinuity point of a probability density function. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 194-199. http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a17/

[1] Borovkov A.A., “Otsenki momenta razladki po bolshim vyborkam pri neizvestnykh raspredeleniyakh”, Teoriya veroyatnostei i ee primeneniya, 53 (2008), 437–457 | DOI

[2] Ibragimov I.A., Khasminskii R.Z., Assimptoticheskaya teoriya otsenivaniya, Nauka, M., 1979, 528 pp. | MR

[3] Mosyagin V.E., “Asimptoticheskoe predstavlenie dlya protsessa otnosheniya pravdopodobiya v sluchae razryvnoi plotnosti”, Sib. mat. zhurn, 35:2 (1994), 416–423 | MR | Zbl

[4] Mosyagin V.E., “Otsenka skorosti skhodimosti raspredelenii normirovannykh otsenok maksimalnogo pravdopodobiya v sluchae razryvnoi plotnosti”, Sib. mat. zhurn., 37:4 (1996), 895–903 | MR | Zbl

[5] Mosyagin V.E., Shvemler N.A., “Raspredelenie momenta maksimuma raznosti dvukh puassonovskikh protsessov s otritsatelnym lineinym snosom”, Sib. elektron. mat. izv., 13 (2016), 1229–1248 | DOI | Zbl

[6] Mosyagin V.E., Shvemler N.A., “Lokalnye svoistva predelnogo raspredeleniya statisticheskoi otsenki tochki razryva plotnosti”, Sib. elektron. mat. izv., 14 (2017), 1307–1316 | DOI | Zbl

[7] Mosyagin V.E., Shvemler N.A., “Metod usrednennogo minimuma dlya nakhozhdeniya sostoyatelnoi otsenki tochki razryva plotnosti raspredeleniya”, Lomonosovskie chteniya na Altae: fundamentalnye problemy nauki i obrazovaniya, tez. dokl. Mezhdunar. konf., AltGU, Barnaul, 2017, 453–455

[8] Skorokhod A.V., Sluchainye protsessy s nezavisimymi prirascheniyami, Nauka, M., 1964, 280 pp. | MR

[9] Shvemler N.A., Mosyagin V.E., Programma dlya otsenki neizvestnogo parametra tochki razryva plotnosti raspredeleniya, Svid. No2017660490 ot 22.09.2017, Federalnaya sluzhba po intellektualnoi sobstvennosti ROSPATENT.

[10] Borovkov A.A., Linke Yu. Yu., “Change-point problem for large samples and incomplete information on distributions”, Math. Methods Statist., 14:4 (2005), 404–430 | MR

[11] Hawkins D.L., “A simple least squares method for estimating a change in mean”, Comm. Statist. Simulation, 15 (1986), 655–679 | MR | Zbl