@article{TIMM_2018_24_2_a17,
author = {V. E. Mosyagin and N. A. Shvemler},
title = {Asymptotic confidence interval for a discontinuity point of a probability density function},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {194--199},
year = {2018},
volume = {24},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a17/}
}
TY - JOUR AU - V. E. Mosyagin AU - N. A. Shvemler TI - Asymptotic confidence interval for a discontinuity point of a probability density function JO - Trudy Instituta matematiki i mehaniki PY - 2018 SP - 194 EP - 199 VL - 24 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a17/ LA - ru ID - TIMM_2018_24_2_a17 ER -
%0 Journal Article %A V. E. Mosyagin %A N. A. Shvemler %T Asymptotic confidence interval for a discontinuity point of a probability density function %J Trudy Instituta matematiki i mehaniki %D 2018 %P 194-199 %V 24 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a17/ %G ru %F TIMM_2018_24_2_a17
V. E. Mosyagin; N. A. Shvemler. Asymptotic confidence interval for a discontinuity point of a probability density function. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 194-199. http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a17/
[1] Borovkov A.A., “Otsenki momenta razladki po bolshim vyborkam pri neizvestnykh raspredeleniyakh”, Teoriya veroyatnostei i ee primeneniya, 53 (2008), 437–457 | DOI
[2] Ibragimov I.A., Khasminskii R.Z., Assimptoticheskaya teoriya otsenivaniya, Nauka, M., 1979, 528 pp. | MR
[3] Mosyagin V.E., “Asimptoticheskoe predstavlenie dlya protsessa otnosheniya pravdopodobiya v sluchae razryvnoi plotnosti”, Sib. mat. zhurn, 35:2 (1994), 416–423 | MR | Zbl
[4] Mosyagin V.E., “Otsenka skorosti skhodimosti raspredelenii normirovannykh otsenok maksimalnogo pravdopodobiya v sluchae razryvnoi plotnosti”, Sib. mat. zhurn., 37:4 (1996), 895–903 | MR | Zbl
[5] Mosyagin V.E., Shvemler N.A., “Raspredelenie momenta maksimuma raznosti dvukh puassonovskikh protsessov s otritsatelnym lineinym snosom”, Sib. elektron. mat. izv., 13 (2016), 1229–1248 | DOI | Zbl
[6] Mosyagin V.E., Shvemler N.A., “Lokalnye svoistva predelnogo raspredeleniya statisticheskoi otsenki tochki razryva plotnosti”, Sib. elektron. mat. izv., 14 (2017), 1307–1316 | DOI | Zbl
[7] Mosyagin V.E., Shvemler N.A., “Metod usrednennogo minimuma dlya nakhozhdeniya sostoyatelnoi otsenki tochki razryva plotnosti raspredeleniya”, Lomonosovskie chteniya na Altae: fundamentalnye problemy nauki i obrazovaniya, tez. dokl. Mezhdunar. konf., AltGU, Barnaul, 2017, 453–455
[8] Skorokhod A.V., Sluchainye protsessy s nezavisimymi prirascheniyami, Nauka, M., 1964, 280 pp. | MR
[9] Shvemler N.A., Mosyagin V.E., Programma dlya otsenki neizvestnogo parametra tochki razryva plotnosti raspredeleniya, Svid. No2017660490 ot 22.09.2017, Federalnaya sluzhba po intellektualnoi sobstvennosti ROSPATENT.
[10] Borovkov A.A., Linke Yu. Yu., “Change-point problem for large samples and incomplete information on distributions”, Math. Methods Statist., 14:4 (2005), 404–430 | MR
[11] Hawkins D.L., “A simple least squares method for estimating a change in mean”, Comm. Statist. Simulation, 15 (1986), 655–679 | MR | Zbl