Voir la notice du chapitre de livre
Mots-clés : martingale, Ito formula
@article{TIMM_2018_24_2_a16,
author = {I. V. Mel'nikova and D. I. Smetannikov},
title = {The study of equations for probability characteristics of random processes described by stochastic equations},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {185--193},
year = {2018},
volume = {24},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a16/}
}
TY - JOUR AU - I. V. Mel'nikova AU - D. I. Smetannikov TI - The study of equations for probability characteristics of random processes described by stochastic equations JO - Trudy Instituta matematiki i mehaniki PY - 2018 SP - 185 EP - 193 VL - 24 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a16/ LA - ru ID - TIMM_2018_24_2_a16 ER -
%0 Journal Article %A I. V. Mel'nikova %A D. I. Smetannikov %T The study of equations for probability characteristics of random processes described by stochastic equations %J Trudy Instituta matematiki i mehaniki %D 2018 %P 185-193 %V 24 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a16/ %G ru %F TIMM_2018_24_2_a16
I. V. Mel'nikova; D. I. Smetannikov. The study of equations for probability characteristics of random processes described by stochastic equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 185-193. http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a16/
[1] Allen E., Modeling with Ito stochastic differential equations, Springer, Dordrecht, 2007, 230 pp. | MR | Zbl
[2] Gardiner K., Stochastic methods. A Handbook for the natural and social sciences, Springer, Berlin, Heidelberg, 2004, 440 pp. | MR
[3] Gawarecki L., Mandrekar V., Stochastic differential equations in infinite dimensions with applications to stochastic partial differential equations, Springer-Verlag, Berlin; Heidelberg, 2011, 291 pp. | MR | Zbl
[4] Melnikova I.V., Stochastic cauchy problems in infinite dimensions. Regularized and generalized solutions, CRC Press, Taylor Francis Group, Boca Raton; London, 2016, 300 pp. | MR
[5] Shreve S., Stochastic calculus for finance II. Continuous-time models, Springer Verlag, N Y, 2004, 550 pp. | MR | Zbl
[6] Gikhman I.I., Skorokhod A.V., Stokhasticheskie differentsialnye uravneniya i ikh prilozheniya, Naukova dumka, Kiev, 1982, 612 pp. | MR
[7] Gnedenko B. V., Kurs teorii veroyatnostei, Editorial URSS, M., 2008, 448 pp. | MR
[8] Dubko V.A., Karachanskaya E.V., “Stokhasticheskie pervye integraly, yadra integralnykh invariantov i uravneniya Kolmogorova”, Dalnevostochnyi mat. zhurn., 14:2 (2014), 200–216 | MR | Zbl
[9] Kolmogorov A.N., “Ob analiticheskikh metodakh v teorii veroyatnostei”, Uspekhi mat. nauk, 1938, no. 5, 41 pp.
[10] Oksendal B., Stokhasticheskie differentsialnye uravneniya. Vvedenie v teoriyu i prilozheniya, Mir, AST, M., 2003, 408 pp.
[11] Rozanov Yu. A., Sluchainye protsessy, Nauka. Glavnaya redaktsiya fiz-mat. literatury, M., 1971, 228 pp. | MR