Automorphisms of a distance-regular graph with intersection array 176, 135, 32, 1; 1, 16, 135, 176
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 173-184 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A distance-regular graph $\Gamma$ with intersection array $\{176,135,32,1;1,16,135,176\}$ is an $AT4$-graph. Its antipodal quotient $\bar\Gamma$ is a strongly regular graph with parameters $(672,176$, $40,48)$. In both graphs the neighborhoods of vertices are strongly regular with parameters $(176,40,12,8)$. We study the automorphisms of these graphs. In particular, the graph $\Gamma$ is not arc-transitive. If $G=\mathrm{Aut}\,(\Gamma)$ contains an element of order 11, acts transitively on the vertex set of $\Gamma$, and $S(G)$ fixes each antipodal class, then the full preimage of the group $(G/S(G))'$ is an extension of a group of order 3 by $M_{22}$ or $U_6(2)$. We describe automorphism groups of strongly regular graphs with parameters $(176,40,12,8)$ and $(672,176,40,48)$ in the vertex-symmetric case.
Keywords: strongly regular graph, distance-regular graph
Mots-clés : graph automorphism.
@article{TIMM_2018_24_2_a15,
     author = {A. A. Makhnev and D. V. Paduchikh},
     title = {Automorphisms of a distance-regular graph with intersection array 176, 135, 32, 1; 1, 16, 135, 176},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {173--184},
     year = {2018},
     volume = {24},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a15/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - D. V. Paduchikh
TI  - Automorphisms of a distance-regular graph with intersection array 176, 135, 32, 1; 1, 16, 135, 176
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 173
EP  - 184
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a15/
LA  - ru
ID  - TIMM_2018_24_2_a15
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A D. V. Paduchikh
%T Automorphisms of a distance-regular graph with intersection array 176, 135, 32, 1; 1, 16, 135, 176
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 173-184
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a15/
%G ru
%F TIMM_2018_24_2_a15
A. A. Makhnev; D. V. Paduchikh. Automorphisms of a distance-regular graph with intersection array 176, 135, 32, 1; 1, 16, 135, 176. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 173-184. http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a15/

[1] Makhnev A.A., Paduchikh D.V., “O silno regulyarnykh grafakh s sobstvennym znacheniem $\mu$ i ikh rasshireniyakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:3 (2013), 207–214 | MR

[2] Gutnova A.K., Makhnev A.A., “O grafakh, v kotorykh okrestnosti vershin yavlyayutsya psevdogeometricheskimi grafami dlya GQ(3,3)”, Tr. IM NAN Belarusi, 18:1 (2010), 28–35 | MR

[3] Cameron P.J., Permutation groups, London Math. Soc. Student Texts, 45, Cambridge Univ. Press, Cambridge, 1999, 220 pp. | MR | Zbl

[4] Brouwer A.E., Haemers W.H., “The Gewirtz graph: an exercize in the theory of graph spectra”, Europ. J. Comb., 14 (1993), 397–407 | DOI | MR | Zbl

[5] Behbahani M., Lam C., “Strongly regular graphs with nontrivial automorphisms”, Discrete Math., 311:2–3 (2011), 132–144 | DOI | MR | Zbl

[6] Gavrilyuk A.L., Makhnev A.A., “Ob avtomorfizmakh distantsionno regulyarnogo grafa s massivom peresechenii {56,45,1;1,9,56}”, Dokl. AN, 432:5 (2010), 512–515

[7] Zavarnitsine A.V., “Finite simple groups with narrow prime spectrum”, Siberian Electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl

[8] The GAP Group GAP - Groups, Algorithms, and Programming, Version 4.8.10 [e-resource]. URL: http://www.gap-system.org