Products and joins of locally normal Fitting classes
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 152-157
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\pi$ be a nonempty set of primes. A nontrivial Fitting class $\mathfrak{F}$ is said to be normal in the class $\mathfrak{S}_\pi$ of all finite soluble $\pi$-groups or $\pi$-normal (we write $\mathfrak{F\trianglelefteq S}_\pi$) if $\mathfrak{F\subseteq S}_\pi$ and the $\mathfrak{F}$-radical of every $\pi$-group $G$ is a $\mathfrak{F}$-maximal subgroup of $G$. If $\pi$ is the set of all primes, then $\mathfrak{F}$ is called normal. The product $\mathfrak{FH}$ of Fitting classes $\mathfrak{F}$ and $\mathfrak{H}$ is called $\pi$-normal if $\mathfrak{FH}$ is a $\pi$-normal Fitting class. We prove the existence of $\pi$-normal products of Fitting classes factorizable by non-$\pi$-normal factors. Assume that $\mathbb{P}$ is the set of all primes, $\varnothing\neq\pi\subseteq\mathbb{P}$, $\mathfrak{F}$ is some Fitting class of $\pi$-groups, and $\omega=\sigma(\mathfrak{F})$ is the set of all prime divisors of all groups from $\mathfrak{F}$. It is proved that if $\mathfrak{F^2=F}$ and $\mathfrak{H}$ is the class of all $\pi$-groups with central $\omega$-socle, then the product $\mathfrak{FH}$ is $\pi$-normal although each of the factors $\mathfrak{F}$ and $\mathfrak{H}$ is not $\pi$-normal. The lattice join $\mathfrak{F\vee H}$ of Fitting classes $\mathfrak{F}$ and $\mathfrak{H}$ is the Fitting class generated by $\mathfrak{F\cup H}$. If $\mathfrak{F\vee H}$ is a $\pi$-normal Fitting class, then $\mathfrak{F\vee H}$ is called $\pi$-normal. Let $\mathfrak{F}$ and $\mathfrak{H}$ be Fitting classes of $\pi$-groups. We prove that the lattice join $\mathfrak{F\vee H}$ is a $\pi$-normal Fitting class if and only if $\mathfrak{F}$ or $\mathfrak{H}$ is a $\pi$-normal Fitting class.
Keywords:
$\mathfrak{F}$-radical, Fitting class, $\pi$-normal Fitting class, join of Fitting classes.
@article{TIMM_2018_24_2_a13,
author = {A. V. Martsinkevich and N. T. Vorob'ev},
title = {Products and joins of locally normal {Fitting} classes},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {152--157},
publisher = {mathdoc},
volume = {24},
number = {2},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a13/}
}
TY - JOUR AU - A. V. Martsinkevich AU - N. T. Vorob'ev TI - Products and joins of locally normal Fitting classes JO - Trudy Instituta matematiki i mehaniki PY - 2018 SP - 152 EP - 157 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a13/ LA - ru ID - TIMM_2018_24_2_a13 ER -
A. V. Martsinkevich; N. T. Vorob'ev. Products and joins of locally normal Fitting classes. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 152-157. http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a13/