Products and joins of locally normal Fitting classes
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 152-157
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\pi$ be a nonempty set of primes. A nontrivial Fitting class $\mathfrak{F}$ is said to be normal in the class $\mathfrak{S}_\pi$ of all finite soluble $\pi$-groups or $\pi$-normal (we write $\mathfrak{F\trianglelefteq S}_\pi$) if $\mathfrak{F\subseteq S}_\pi$ and the $\mathfrak{F}$-radical of every $\pi$-group $G$ is a $\mathfrak{F}$-maximal subgroup of $G$. If $\pi$ is the set of all primes, then $\mathfrak{F}$ is called normal. The product $\mathfrak{FH}$ of Fitting classes $\mathfrak{F}$ and $\mathfrak{H}$ is called $\pi$-normal if $\mathfrak{FH}$ is a $\pi$-normal Fitting class. We prove the existence of $\pi$-normal products of Fitting classes factorizable by non-$\pi$-normal factors. Assume that $\mathbb{P}$ is the set of all primes, $\varnothing\neq\pi\subseteq\mathbb{P}$, $\mathfrak{F}$ is some Fitting class of $\pi$-groups, and $\omega=\sigma(\mathfrak{F})$ is the set of all prime divisors of all groups from $\mathfrak{F}$. It is proved that if $\mathfrak{F^2=F}$ and $\mathfrak{H}$ is the class of all $\pi$-groups with central $\omega$-socle, then the product $\mathfrak{FH}$ is $\pi$-normal although each of the factors $\mathfrak{F}$ and $\mathfrak{H}$ is not $\pi$-normal. The lattice join $\mathfrak{F\vee H}$ of Fitting classes $\mathfrak{F}$ and $\mathfrak{H}$ is the Fitting class generated by $\mathfrak{F\cup H}$. If $\mathfrak{F\vee H}$ is a $\pi$-normal Fitting class, then $\mathfrak{F\vee H}$ is called $\pi$-normal. Let $\mathfrak{F}$ and $\mathfrak{H}$ be Fitting classes of $\pi$-groups. We prove that the lattice join $\mathfrak{F\vee H}$ is a $\pi$-normal Fitting class if and only if $\mathfrak{F}$ or $\mathfrak{H}$ is a $\pi$-normal Fitting class.
Keywords: $\mathfrak{F}$-radical, Fitting class, $\pi$-normal Fitting class, join of Fitting classes.
@article{TIMM_2018_24_2_a13,
     author = {A. V. Martsinkevich and N. T. Vorob'ev},
     title = {Products and joins of locally normal {Fitting} classes},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {152--157},
     year = {2018},
     volume = {24},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a13/}
}
TY  - JOUR
AU  - A. V. Martsinkevich
AU  - N. T. Vorob'ev
TI  - Products and joins of locally normal Fitting classes
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 152
EP  - 157
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a13/
LA  - ru
ID  - TIMM_2018_24_2_a13
ER  - 
%0 Journal Article
%A A. V. Martsinkevich
%A N. T. Vorob'ev
%T Products and joins of locally normal Fitting classes
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 152-157
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a13/
%G ru
%F TIMM_2018_24_2_a13
A. V. Martsinkevich; N. T. Vorob'ev. Products and joins of locally normal Fitting classes. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 152-157. http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a13/

[1] Doerk K., Hawkes T., Finite soluble groups, De Gruyter Expo. Math., 4, Walter de Gruyter Co, Berlin; N Y, 1992, 891 pp. | MR

[2] Blessenohl D., Gasch$\ddot{\mathrm{u}}$tz W., “Über normale Schunk- und Fittingklassen”, Math. Z, 118:1 (1970), 1–8 | DOI | MR | Zbl

[3] Vorobëv N.T., Martsinkevich A.V., “Konechnye $\pi$-gruppy s normalnymi in'ektorami”, Sib. mat. zhurn., 56:4 (2015), 790–797 | MR | Zbl

[4] Cossey J., “Products of Fitting classes”, Math. Z, 141:3 (1975), 289–295 | DOI | MR | Zbl

[5] Kourovskaya tetrad (nereshennye voprosy teorii grupp), Izd. 11, IM RAN, Novosibirsk, 1990

[6] Vorob'ev N.T., “On the factorization of local and non-local products of finite groups of non-local formations”, Proc. 7th Reg. Sci. Sess. Math., Sect. Algebra and Number Theory, Kalsk (Poland), 1990, 9–13 | MR | Zbl

[7] Vedernikov V.A., “O lokalnykh formatsiyakh konechnykh grupp”, Mat. zametki, 46:6 (1989), 32–37 | Zbl

[8] Vorobëv N.T., Skiba A.N., “Lokalnye proizvedeniya nelokalnykh klassov Fittinga”, Voprosy algebry, 1995, no. 8, 55–58 | Zbl

[9] Shpakov V.V., Vorobëv N.T., “Lokalnye faktorizatsii nelokalnykh klassov Fittinga”, Diskret. matematika, 20:3 (2008), 111–118 | DOI | MR | Zbl

[10] Lockett F.P., “The Fitting class $\mathfrak{F^*}$”, Math. Z, 137:2 (1974), 131–136 | DOI | MR | Zbl

[11] Cusack E., “The join of two Fitting classes”, Math. Z., 167:1 (1979), 37–47 | DOI | MR | Zbl

[12] Beidleman J.C., “On products and normal Fitting classes”, Arch. Math., 28:1 (1977), 347–356 | DOI | MR | Zbl

[13] Gaschütz W., “Lectures of subgroups of Sylow type in finite soluble groups”, Notes on pure mathematics, 11, 1979, 1–100

[14] Saveleva N.V., Vorobëv N.T., “Maksimalnye po silnomu $\pi$-vlozheniyu klassy Fittinga”, Izv. Gomel. gos. un-ta im. F. Skoriny, 2008, no. 2(47), 157–168