On computing a class of integrals of rational functions with parameters and singularities on complex hyperplanes
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 123-140
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We give an algorithm for computing the integral $$\displaystyle\int_{|\xi_1|=1}\ldots\displaystyle\int_{|\xi_n|=1}\frac{f(\xi)}{ \prod \limits_{j=1}^m (a_{j,1}z_1 \xi_1+\ldots+a_{j,n}z_n \xi_n+c_j)^{t_j}}\cdot \frac{d\xi_1}{\xi_1}\ldots\frac{d\xi_n}{\xi_n},$$ where the integration set is the distinguished boundary of the unit polydisk in $\mathbb C^n$, the function $f(\xi)$ is holomorphic in a neighborhood of this set, and $\prod_{j=1}^m (a_{j,1}z_1 \xi_1+\ldots+a_{j,n}z_n \xi_n+c_j)\not=0$ for points $z=(z_1,\ldots, z_n)$ of a connected $n$-circular set $G\subset\mathbb C^n $. For points of the distinguished boundary, whose coordinates satisfy the relations $|\xi_1|=1$, $\ldots$, $|\xi_n|=1$, the sets $\{V_j\}=\{(z_1,\ldots,z_n)\in\mathbb C^n\colon a_{j,1}z_1 \xi_1+\ldots+a_{j,n}z_n \xi_n+c_j=0\}$ are $n$-circular, and it is convenient to study their mutual arrangement in $\mathbb C^n$ by using the projection $\pi\colon \mathbb C^n\rightarrow \mathbb R^n_{+}$, where $\pi(z_1,\ldots,z_n)=(|z_1|,\ldots,|z_n|)$. A connected set $\pi(\{V_j\})$ divides $\mathbb R^n_+$ into at most $n+1$ disjoint nonempty parts, and $\pi(G)$ belongs to one of them. Therefore the number of variants of the mutual arrangement of the sets $G$ and $\{V_1\},\ldots,\{V_m\}$ in $\mathbb C^n$, which influences the value of the integral, does not exceed $(n+1)^m$. In Theorems 1 and 2 we compute the integral for two of these variants. An example of computing a double integral by applying its parameterization and one of the theorems is given.
Keywords: integral representation, complex plane.
Mots-clés : n-circular domain
@article{TIMM_2018_24_2_a11,
     author = {V. P. Krivokolesko},
     title = {On computing a class of integrals of rational functions with parameters and singularities on complex hyperplanes},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {123--140},
     year = {2018},
     volume = {24},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a11/}
}
TY  - JOUR
AU  - V. P. Krivokolesko
TI  - On computing a class of integrals of rational functions with parameters and singularities on complex hyperplanes
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 123
EP  - 140
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a11/
LA  - ru
ID  - TIMM_2018_24_2_a11
ER  - 
%0 Journal Article
%A V. P. Krivokolesko
%T On computing a class of integrals of rational functions with parameters and singularities on complex hyperplanes
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 123-140
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a11/
%G ru
%F TIMM_2018_24_2_a11
V. P. Krivokolesko. On computing a class of integrals of rational functions with parameters and singularities on complex hyperplanes. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 123-140. http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a11/

[1] Aizenberg L.A., Yuzhakov A.P., Integralnye predstavleniya i vychety v mnogomernom kompleksnom analize, Nauka, Sib. otd-nie, Novosibirsk, 1979, 366 pp. | MR

[2] Egorychev G.P., Integralnoe predstavlenie i vychislenie kombinatornykh summ, Nauka, Novosibirsk, 1977, 271 pp. | MR

[3] Krivokolesko V.P., “Method for obtaining combinatorial identities with polynomial coefficients by the means of integral representations”, Zhurn. Sib. federalnogo un-ta. Ser. Matematika i fizika, 9(2) (2016), 192–201 | MR

[4] Fam F., Vvedenie v topologicheskoe issledovanie osobennostei Landau, Mir, M., 1967, 184 pp.

[5] Khua R, Teplits V., Gomologii i feinmanovskie integraly, Mir, M., 1969, 229 pp. | MR

[6] Krivokolesko V. P., “Integralnye predstavleniya v lineino vypuklykh poliedrakh i nekotorye kombinatornye tozhdestva”, Zhurn. Sib. federalnogo un-ta. Ser. Matematika i fizika, 2(2) (2009), 176–188

[7] Krivokolesko V.P., Tsikh A.K., “Integralnye predstavleniya v lineino vypuklykh poliedrakh”, Sib. mat. zhurn., 46:3 (2005), 579–593 | MR | Zbl

[8] Forsberg M., Passare M., Tsikh A., “Laurent determinants and arrangements of hyperplane amoebas”, Advances in Math., 151 (2000), 45–70 | DOI | MR | Zbl

[9] Shabat B.V., Vvedenie v kompleksnyi analiz, Nauka, M., 1969, 576 pp. | MR

[10] Tsikh A. K., Multidimensional residues and their applications, Amer. Math. Soc., Providence, 1992, 188 pp. | MR | Zbl