On the definition of a Brownian sheet
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 3-11
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the properties of a Brownian sheet, which is a random field generalizing the Brownian motion. It is demonstrated that different sets of properties can be used to define this random function, just as in the case of the Brownian motion. We formulate four definitions of the Brownian motion and, based on them, four definitions of a Brownian sheet. An interesting property of the Brownian motion, which is important for our discussion, is the fact that a process with continuous trajectories and independent increments starting from zero is Gaussian (J. Doob's theorem). In the present paper, we generalize this statement to the case of random fields, which allows us to prove the equivalence of the formulated definitions of a Brownian sheet.
Keywords: Brownian sheet, Brownian motion, Wiener process, Gaussian process, Wiener-Chentsov random field.
@article{TIMM_2018_24_2_a0,
     author = {U. A. Alekseeva},
     title = {On the definition of a {Brownian} sheet},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {3--11},
     year = {2018},
     volume = {24},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a0/}
}
TY  - JOUR
AU  - U. A. Alekseeva
TI  - On the definition of a Brownian sheet
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 3
EP  - 11
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a0/
LA  - ru
ID  - TIMM_2018_24_2_a0
ER  - 
%0 Journal Article
%A U. A. Alekseeva
%T On the definition of a Brownian sheet
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 3-11
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a0/
%G ru
%F TIMM_2018_24_2_a0
U. A. Alekseeva. On the definition of a Brownian sheet. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 3-11. http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a0/

[1] Allen E.J., Modeling with Ito stochastic differential equations, Springer, N Y, Berlin, 2007, 228 pp. | DOI | MR | Zbl

[2] Bovkun V.A., “O modelyakh, privodyaschikh k beskonechnomernoi stokhasticheskoi zadache Koshi”, Teoriya veroyatnostei i ee primeneniya, 62:4 (2017), 803–804

[3] Gikhman I.I., Skorokhod A.V., Stokhasticheskie differentsialnye uravneniya, Naukova dumka, Kiev, 1968, 355 pp. | MR

[4] Ito K., Makkin G., Diffuzionnye protsessy i ikh traektorii, Mir, M., 1968, 395 pp.

[5] Bulinskii A.V., Shiryaev A.N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2005, 400 pp.

[6] Da Prato G., Zabczyk J., Stochastic equations in infinite dimensions, Cambridge Univ. Press, Cambridge, 2014, 380 pp. | MR | Zbl

[7] Melnikova I.V., Stochastic cauchy problems in infinite dimensions. Regularized and generalized solutions, CRC Press, Taylor Francis Group, Boca Raton; London, 2016, 300 pp. | MR