Voir la notice du chapitre de livre
@article{TIMM_2018_24_2_a0,
author = {U. A. Alekseeva},
title = {On the definition of a {Brownian} sheet},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {3--11},
year = {2018},
volume = {24},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a0/}
}
U. A. Alekseeva. On the definition of a Brownian sheet. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 3-11. http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a0/
[1] Allen E.J., Modeling with Ito stochastic differential equations, Springer, N Y, Berlin, 2007, 228 pp. | DOI | MR | Zbl
[2] Bovkun V.A., “O modelyakh, privodyaschikh k beskonechnomernoi stokhasticheskoi zadache Koshi”, Teoriya veroyatnostei i ee primeneniya, 62:4 (2017), 803–804
[3] Gikhman I.I., Skorokhod A.V., Stokhasticheskie differentsialnye uravneniya, Naukova dumka, Kiev, 1968, 355 pp. | MR
[4] Ito K., Makkin G., Diffuzionnye protsessy i ikh traektorii, Mir, M., 1968, 395 pp.
[5] Bulinskii A.V., Shiryaev A.N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2005, 400 pp.
[6] Da Prato G., Zabczyk J., Stochastic equations in infinite dimensions, Cambridge Univ. Press, Cambridge, 2014, 380 pp. | MR | Zbl
[7] Melnikova I.V., Stochastic cauchy problems in infinite dimensions. Regularized and generalized solutions, CRC Press, Taylor Francis Group, Boca Raton; London, 2016, 300 pp. | MR