Solvability of a mixed boundary value problem for a stationary reaction-convection-diffusion model
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 106-120
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the solvability of an inhomogeneous mixed boundary value problem for a stationary reaction-convection-diffusion model. Such models are often used in science and engineering for the description and analysis of various processes of heat and mass transfer. We focus on the issues of solvability of the boundary value problem in various functional spaces and on the stability of the solution and its continuous dependence on the input data in natural metrics. The peculiarity of the problem consists in the inhomogeneity and irregularity of the mixed boundary data. These boundary data, in general, cannot be continued inside the domain so that the continuation is sufficiently smooth and can be used in the known way to transform the problem to homogeneous boundary data. To prove the solvability of the problem, we use the Lax-Milgram theorem. Estimates for the norms of the solution follow from the same theorem. The properties of the solution of the direct problem found in this study will be used in what follows to solve inverse problems.
Keywords: direct problem, mixed boundary condition, weak solution, generalized solution, strong solution, stability, completely continuous operator.
@article{TIMM_2018_24_1_a9,
     author = {A. I. Korotkii and A. L. Litvinenko},
     title = {Solvability of a mixed boundary value problem for a stationary reaction-convection-diffusion model},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {106--120},
     year = {2018},
     volume = {24},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a9/}
}
TY  - JOUR
AU  - A. I. Korotkii
AU  - A. L. Litvinenko
TI  - Solvability of a mixed boundary value problem for a stationary reaction-convection-diffusion model
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 106
EP  - 120
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a9/
LA  - ru
ID  - TIMM_2018_24_1_a9
ER  - 
%0 Journal Article
%A A. I. Korotkii
%A A. L. Litvinenko
%T Solvability of a mixed boundary value problem for a stationary reaction-convection-diffusion model
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 106-120
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a9/
%G ru
%F TIMM_2018_24_1_a9
A. I. Korotkii; A. L. Litvinenko. Solvability of a mixed boundary value problem for a stationary reaction-convection-diffusion model. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 106-120. http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a9/

[1] Marchuk G.I., Matematicheskoe modelirovanie v probleme okruzhayuschei sredy, Nauka, M., 1982, 319 pp. | MR

[2] Samarskii A.A., Vabischevich P.N., Vychislitelnaya teploperedacha, Editorial URSS, M., 2003, 784 pp.

[3] Ladyzhenskaya O.A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973, 408 pp. | MR

[4] Ladyzhenskaya O.A., Uraltseva N.N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973, 576 pp. | MR

[5] Ladyzhenskaya O.A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Fizmatlit, M., 1961, 203 pp. | MR

[6] Mikhailov V.P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976, 392 pp. | MR

[7] Mikhlin S.G., Lineinye uravneniya v chastnykh proizvodnykh, Vysshaya shkola, M., 1977, 431 pp. | MR

[8] Alekseev G.V., Tereshko D.A., Analiz i optimizatsiya v gidrodinamike vyazkoi zhidkosti, Dalnauka, Vladivostok, 2008, 365 pp.

[9] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972, 416 pp. | MR

[10] Korotkii A.I., Kovtunov D.A., “Rekonstruktsiya granichnykh rezhimov v obratnoi zadache teplovoi konvektsii vysokovyazkoi zhidkosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 12:2 (2006), 88–97

[11] Korotkii A.I., Starodubtseva Yu.V., “Pryamye i obratnye zadachi dlya modelei statsionarnoi reaktsii-konvektsii-diffuzii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:3 (2014), 98–113

[12] Korotkii A.I., Starodubtseva Yu.V., Modelirovanie pryamykh i obratnykh granichnykh zadach dlya statsionarnykh modelei teplomassoperenosa, Izd-vo Ural. un-ta, Ekaterinburg, 2015, 168 pp.

[13] Adams R.A., Sobolev spaces, Academic Press, New York, 1975, 268 pp. | MR

[14] Sobolev S.L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988, 336 pp. | MR

[15] Rektoris K., Variatsionnye metody v matematicheskoi fizike i tekhnike, Mir, M., 1985, 590 pp. | MR

[16] Smirnov V.I., Kurs vysshei matematiki, v. 5, Fizmatlit, M., 1959, 657 pp. | MR

[17] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972, 496 pp. | MR

[18] Danford N., Shvarts Dzh.T., Lineinye operatory. Obschaya teoriya, Editorial URSS, M., 2004, 896 pp.