On fixed points of multivalued mappings in spaces with a vector-valued metric
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 93-105
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Nadler's theorem on a fixed point of a multivalued mapping is extended to spaces with a vector-valued metric. A vector-valued metric is understood as a mapping with the properties of a usual metric and values in a linear normed ordered space. We prove an analog of Nadler's theorem and apply it to a system of integral inclusions in a space of summable functions. Then we study a boundary value problem with multivalued conditions for systems of functional differential equations by means of reduction to a system of integral inclusions. Conditions for the existence of solutions are obtained and estimates of the solutions are given. The existence conditions do not contain the convexity requirement for the values of the multivalued function generating a Nemytskii operator.
Keywords: space with a vector-valued metric, contracting multivalued mapping, fixed point, integral inclusion.
@article{TIMM_2018_24_1_a8,
     author = {E. S. Zhukovskiy and E. A. Panasenko},
     title = {On fixed points of multivalued mappings in spaces with a vector-valued metric},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {93--105},
     year = {2018},
     volume = {24},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a8/}
}
TY  - JOUR
AU  - E. S. Zhukovskiy
AU  - E. A. Panasenko
TI  - On fixed points of multivalued mappings in spaces with a vector-valued metric
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 93
EP  - 105
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a8/
LA  - ru
ID  - TIMM_2018_24_1_a8
ER  - 
%0 Journal Article
%A E. S. Zhukovskiy
%A E. A. Panasenko
%T On fixed points of multivalued mappings in spaces with a vector-valued metric
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 93-105
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a8/
%G ru
%F TIMM_2018_24_1_a8
E. S. Zhukovskiy; E. A. Panasenko. On fixed points of multivalued mappings in spaces with a vector-valued metric. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 93-105. http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a8/

[1] Chentsov A.G., “Metod programmnykh iteratsii v igrovoi zadache navedeniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 22:2 (2016), 304–321 | DOI

[2] Chentsov A.G., “Ob odnoi modifikatsii metoda programmnykh iteratsii”, Differents. uravneniya, 39:8 (2003), 1076–1086 | MR

[3] Zabreiko P.P., Makarevich T.A., “Ob odnom obobschenii printsipa Banakha–Kachchiopolli na operatory v psevdometricheskikh prostranstvakh”, Differents. uravneniya, 23:9 (1987), 1497–1504 | MR

[4] Perov A.I., “Mnogomernaya versiya printsipa obobschënnogo szhatiya M. A. Krasnoselskogo”, Funkts. analiz i ego prilozheniya, 44:1 (2010), 83–87 | DOI | MR

[5] Zhukovskii E.S., “O tochkakh sovpadeniya vektornykh otobrazhenii”, Izv. vuzov. Matematika, 2016, no. 10, 14–28

[6] Zhukovskii E.S., “O vozmuscheniyakh nakryvayuschikh otobrazhenii v prostranstvakh s vektornoznachnoi metrikoi”, Vestn. Tambov. un-ta. Ser.: Estestvennye i tekhnicheskie nauki, 21:2 (2016), 375–379 | DOI

[7] Zhukovskii E.S., “O vozmuscheniyakh vektorno nakryvayuschikh otobrazhenii i sistemakh uravnenii v metricheskikh prostranstvakh”, Sib. mat. zhurn., 57:2 (2016), 297–311 | MR

[8] Yu.G. Borisovich, B.D. Gelman, A.D. Myshkis, V.V. Obukhovskii, Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, Librokom, M., 2011, 224 pp. | MR

[9] Funktsionalnyi analiz, ed. S.G. Krein, Nauka, M., 1972, 544 pp. | MR

[10] Azbelev N.V.,Maksimov V.P., Rakhmatullina L.F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991, 280 pp. | MR

[11] Kantorovich L.V., Akilov G.P., Funktsionalnyi analiz, Nauka, M., 1977, 741 pp. | MR

[12] Bulgakov A.I., Belyaeva O.P., Machina A.N., “Funktsionalno-differentsialnoe vklyuchenie s mnogoznachnym otobrazheniem, ne obladayuschim svoistvom vypuklosti po pereklyucheniyu znachenii”, Vestn. Udmurt. un-ta. Matematika, 2005, no. 1, 3–20