Voir la notice du chapitre de livre
@article{TIMM_2018_24_1_a6,
author = {M. I. Gusev and I. V. Zykov},
title = {On the geometry of reachable sets for control systems with isoperimetric constraints},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {63--75},
year = {2018},
volume = {24},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a6/}
}
TY - JOUR AU - M. I. Gusev AU - I. V. Zykov TI - On the geometry of reachable sets for control systems with isoperimetric constraints JO - Trudy Instituta matematiki i mehaniki PY - 2018 SP - 63 EP - 75 VL - 24 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a6/ LA - ru ID - TIMM_2018_24_1_a6 ER -
M. I. Gusev; I. V. Zykov. On the geometry of reachable sets for control systems with isoperimetric constraints. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 63-75. http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a6/
[1] Neznakhin A.A., Ushakov V.N., “Setochnyi metod priblizhennogo postroeniya yadra vyzhivaemosti dlya differentsialnogo vklyucheniya”, Vychisl. matematika i matematicheskaya fizika, 41:6 (2001), 895–908 | MR
[2] Patsko V. S., Pyatko S. G., Fedotov A. A., “Trekhmernoe mnozhestvo dostizhimosti nelineinoi upravlyaemoi sistemy”, Izv. RAN. Teoriya i sistemy upravleniya, 2003, no. 3, 320–328 | MR
[3] Kurzhanski A.B., Valyi I., Ellipsoidal calculus for estimation and control, Birkhäuser, Basel, 1997, 321 pp. | MR
[4] Kostousova E.K., “Vneshnee i vnutrennee otsenivanie oblastei dostizhimosti pri pomoschi parallelotopov”, Vychisl. tekhnologii, 3:2 (1998), 11–20 | MR
[5] Filippova T.F., “Estimates of reachable sets of impulsive control problems with special nonlinearity”, AIP Conference Proc., 1773 (2016), 1–10 | DOI
[6] Chentsov A.G., “Asimptoticheskaya dostizhimost pri vozmuschenii integralnykh ogranichenii v abstraktnoi zadache upravleniya”, Izv. vuzov. Matematika, 1995, no. 2, 62–73 ; No 3, 60-71
[7] Chentsov A. G., Asymptotic attainability, Kluwer Acad. Publ., Dordrecht; Boston, 1997, 322 pp. | DOI | MR
[8] Polyak B.T., “Sonvexity of the reachable set of nonlinear systems under l2 bounded controls”, Dyn. Contin. Discrete Impuls. Series A: Math. Analysis, 11:2-3 (2004), 255–267 | MR
[9] K.G. Guseinov, O. Ozer, E. Akyar, V.N. Ushakov, “The approximation of reachable sets of control systems with integral constraint on controls”, Nonlinear Diff. Eq. Appl., 14:1-2 (2007), 57–73 | DOI | MR
[10] Gusev M.I., Zykov I.V., “On extremal properties of boundary points of reachable sets for a system with integrally constrained control”, IFAC-PapersOnLine, 50:1 (2017), 4082–4087 | DOI
[11] Gusev M.I., “An algorithm for computing boundary points of reachable sets of control systems under integral constraints”, Ural Math. J., 3:1 (2017), 44–51 | DOI | MR
[12] Baier R., Gerdts M., Xausa I., “Approximation of reachable sets using optimal control algorithms”, Numerical Algebra, Control and Optimization, 3:3 (2013), 519–548 | DOI | MR
[13] Vdovin S.A., Tarasev A.M., Ushakov V.N., “Postroenie mnozhestva dostizhimosti integratora Broketta”, Prikl. matematika i mekhanika, 68:5 (2004), 707–724 | MR
[14] Gornov A.Yu., Vychislitelnye tekhnologii resheniya zadach optimalnogo upravleniya, Nauka, Novosibirsk, 2009, 278 pp.
[15] Podinovskii V.V., Nogin V.D., Pareto-optimalnye resheniya mnogokriterialnykh zadach, Nauka, M., 1982, 256 pp. | MR
[16] Dontchev A.L., “The Graves theorem revisited”, J. Convex Anal., 3:1 (1996), 45–53 | MR
[17] Dmitruk A.V., Milyutin A.A., Osmolovskii N.P., “Teorema Lyusternika i teoriya ekstremuma”, Uspekhi mat. nauk, 35:6 (1980), 11–46 | MR
[18] Shtoier R., Mnogokriterialnaya optimizatsiya. Teoriya, vychisleniya i prilozheniya, Radio i svyaz, M., 1992, 504 pp. | MR
[19] Arutyunov A.V., Magaril-Ilyaev G.G., Tikhomirov V.M., Printsip maksimuma Pontryagina. Dokazatelstvo i prilozheniya, Faktorial press, M., 2006, 144 pp.
[20] Karlin S., Matematicheskie metody v teorii igr, programmirovanii i ekonomike, Mir, M., 1964, 835 pp.
[21] Gusev M.I., Zykov I.V., “A numerical method for solving linear-quadratic control problems with constraints”, Ural Math. J., 2:2 (2016), 108–116 | DOI