On the geometry of reachable sets for control systems with isoperimetric constraints
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 63-75
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A nonlinear control system linear in control variables is considered. The control and the trajectory are subject to a system of isoperimetric constraints in the form of inequalities for integral functionals. We describe the boundary of the reachable set of the system at a given time and show that an admissible control taking the system to the boundary of the admissible set is a weakly efficient solution of a certain optimal control problem with a vector criterion if the linearized system is completely controllable. The components of the criterion are integral functionals that specify isoperimetric constraints. The stated result generalizes the authors' earlier results to the case of several consistent integral constraints. The proof is based on the Graves theorem on covering mappings and on the properties of the derivative of the “input-output” mapping and of the constraints. The result remains valid if the initial state of the system is not fixed but belongs to a given set. The problem is reduced to a control problem with a scalar criterion depending on parameters. The Chebyshev convolution of integral functionals is chosen as the scalar criterion. Necessary conditions are obtained for the optimality of controls taking the system to the boundary of the reachable set in the form of Pontryagin's maximum principle.
Keywords: control system, isoperimetric constraints, reachable set, maximum principle.
@article{TIMM_2018_24_1_a6,
     author = {M. I. Gusev and I. V. Zykov},
     title = {On the geometry of reachable sets for control systems with isoperimetric constraints},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {63--75},
     year = {2018},
     volume = {24},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a6/}
}
TY  - JOUR
AU  - M. I. Gusev
AU  - I. V. Zykov
TI  - On the geometry of reachable sets for control systems with isoperimetric constraints
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 63
EP  - 75
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a6/
LA  - ru
ID  - TIMM_2018_24_1_a6
ER  - 
%0 Journal Article
%A M. I. Gusev
%A I. V. Zykov
%T On the geometry of reachable sets for control systems with isoperimetric constraints
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 63-75
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a6/
%G ru
%F TIMM_2018_24_1_a6
M. I. Gusev; I. V. Zykov. On the geometry of reachable sets for control systems with isoperimetric constraints. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 63-75. http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a6/

[1] Neznakhin A.A., Ushakov V.N., “Setochnyi metod priblizhennogo postroeniya yadra vyzhivaemosti dlya differentsialnogo vklyucheniya”, Vychisl. matematika i matematicheskaya fizika, 41:6 (2001), 895–908 | MR

[2] Patsko V. S., Pyatko S. G., Fedotov A. A., “Trekhmernoe mnozhestvo dostizhimosti nelineinoi upravlyaemoi sistemy”, Izv. RAN. Teoriya i sistemy upravleniya, 2003, no. 3, 320–328 | MR

[3] Kurzhanski A.B., Valyi I., Ellipsoidal calculus for estimation and control, Birkhäuser, Basel, 1997, 321 pp. | MR

[4] Kostousova E.K., “Vneshnee i vnutrennee otsenivanie oblastei dostizhimosti pri pomoschi parallelotopov”, Vychisl. tekhnologii, 3:2 (1998), 11–20 | MR

[5] Filippova T.F., “Estimates of reachable sets of impulsive control problems with special nonlinearity”, AIP Conference Proc., 1773 (2016), 1–10 | DOI

[6] Chentsov A.G., “Asimptoticheskaya dostizhimost pri vozmuschenii integralnykh ogranichenii v abstraktnoi zadache upravleniya”, Izv. vuzov. Matematika, 1995, no. 2, 62–73 ; No 3, 60-71

[7] Chentsov A. G., Asymptotic attainability, Kluwer Acad. Publ., Dordrecht; Boston, 1997, 322 pp. | DOI | MR

[8] Polyak B.T., “Sonvexity of the reachable set of nonlinear systems under l2 bounded controls”, Dyn. Contin. Discrete Impuls. Series A: Math. Analysis, 11:2-3 (2004), 255–267 | MR

[9] K.G. Guseinov, O. Ozer, E. Akyar, V.N. Ushakov, “The approximation of reachable sets of control systems with integral constraint on controls”, Nonlinear Diff. Eq. Appl., 14:1-2 (2007), 57–73 | DOI | MR

[10] Gusev M.I., Zykov I.V., “On extremal properties of boundary points of reachable sets for a system with integrally constrained control”, IFAC-PapersOnLine, 50:1 (2017), 4082–4087 | DOI

[11] Gusev M.I., “An algorithm for computing boundary points of reachable sets of control systems under integral constraints”, Ural Math. J., 3:1 (2017), 44–51 | DOI | MR

[12] Baier R., Gerdts M., Xausa I., “Approximation of reachable sets using optimal control algorithms”, Numerical Algebra, Control and Optimization, 3:3 (2013), 519–548 | DOI | MR

[13] Vdovin S.A., Tarasev A.M., Ushakov V.N., “Postroenie mnozhestva dostizhimosti integratora Broketta”, Prikl. matematika i mekhanika, 68:5 (2004), 707–724 | MR

[14] Gornov A.Yu., Vychislitelnye tekhnologii resheniya zadach optimalnogo upravleniya, Nauka, Novosibirsk, 2009, 278 pp.

[15] Podinovskii V.V., Nogin V.D., Pareto-optimalnye resheniya mnogokriterialnykh zadach, Nauka, M., 1982, 256 pp. | MR

[16] Dontchev A.L., “The Graves theorem revisited”, J. Convex Anal., 3:1 (1996), 45–53 | MR

[17] Dmitruk A.V., Milyutin A.A., Osmolovskii N.P., “Teorema Lyusternika i teoriya ekstremuma”, Uspekhi mat. nauk, 35:6 (1980), 11–46 | MR

[18] Shtoier R., Mnogokriterialnaya optimizatsiya. Teoriya, vychisleniya i prilozheniya, Radio i svyaz, M., 1992, 504 pp. | MR

[19] Arutyunov A.V., Magaril-Ilyaev G.G., Tikhomirov V.M., Printsip maksimuma Pontryagina. Dokazatelstvo i prilozheniya, Faktorial press, M., 2006, 144 pp.

[20] Karlin S., Matematicheskie metody v teorii igr, programmirovanii i ekonomike, Mir, M., 1964, 835 pp.

[21] Gusev M.I., Zykov I.V., “A numerical method for solving linear-quadratic control problems with constraints”, Ural Math. J., 2:2 (2016), 108–116 | DOI