Approximation of minimax solutions to Hamilton-Jacobi functional equations for delay systems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 53-62
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A minimax solution of the Cauchy problem for a functional Hamilton-Jacobi equation with coinvariant derivatives and a condition at the right end is considered. Hamilton-Jacobi equations of this type arise in dynamical optimization problems for time-delay systems. Their approximation is associated with additional questions of the correct transition from the infinite-dimensional functional argument of the desired solution to the finite-dimensional one. Earlier, the schemes based on the piecewise linear approximation of the functional argument and the correctness properties of minimax solutions were studied. In this paper, a scheme for the approximation of Hamilton-Jacobi functional equations with coinvariant derivatives by ordinary Hamilton-Jacobi equations with partial derivatives is proposed and justified. The scheme is based on the approximation of the characteristic functional-differential inclusions used in the definition of the desired minimax solution by ordinary differential inclusions.
Keywords: Hamilton-Jacobi equations, generalized solutions, coinvariant derivatives, finite-dimensional approximations, time-delay systems.
@article{TIMM_2018_24_1_a5,
     author = {M. I. Gomoyunov and N. Yu. Lukoyanov and A. R. Plaksin},
     title = {Approximation of minimax solutions to {Hamilton-Jacobi} functional equations for delay systems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {53--62},
     year = {2018},
     volume = {24},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a5/}
}
TY  - JOUR
AU  - M. I. Gomoyunov
AU  - N. Yu. Lukoyanov
AU  - A. R. Plaksin
TI  - Approximation of minimax solutions to Hamilton-Jacobi functional equations for delay systems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 53
EP  - 62
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a5/
LA  - ru
ID  - TIMM_2018_24_1_a5
ER  - 
%0 Journal Article
%A M. I. Gomoyunov
%A N. Yu. Lukoyanov
%A A. R. Plaksin
%T Approximation of minimax solutions to Hamilton-Jacobi functional equations for delay systems
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 53-62
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a5/
%G ru
%F TIMM_2018_24_1_a5
M. I. Gomoyunov; N. Yu. Lukoyanov; A. R. Plaksin. Approximation of minimax solutions to Hamilton-Jacobi functional equations for delay systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 53-62. http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a5/

[1] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[2] Krasovskii N.N., “K zadache unifikatsii differentsialnykh igr”, Dokl. AN SSSR, 226:6 (1976), 1260–1263 | MR

[3] Osipov Yu.S., “Differentsialnye igry sistem s posledeistviem”, Dokl. AN SSSR, 196:4 (1971), 779–782

[4] Subbotin A.I., Chentsov A.G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, Moskva, 1981, 288 pp. | MR

[5] Chentsov A.G., “Ob igrovoi zadache sblizheniya v zadannyi moment vremeni”, Mat. sb., 99:3 (1976), 394–420 | MR

[6] Subbotin A.I., Minimaksnye neravenstva i uravneniya Gamiltona–Yakobi, Nauka, M., 1991, 216 pp. | MR

[7] Crandall M.G., Lions P.-L., “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 277:1 (1983), 1–42 | DOI | MR

[8] Lukoyanov N.Yu., “Funktsionalnye uravneniya tipa Gamiltona–Yakobi i differentsialnye igry s nasledstvennoi informatsiei”, Dokl. RAN, 371:4 (2000), 457–461 | MR

[9] Krasovskii N.N., Lukoyanov N.Yu., “Uravneniya tipa Gamiltona–Yakobi v nasledstvennykh sistemakh: minimaksnye resheniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 6:1 (2000), 110–130

[10] Lukoyanov N.Yu., Funktsionalnye uravneniya Gamiltona–Yakobi i zadachi upravleniya s nasledstvennoi informatsiei, Izd-vo UrFU, Ekaterinburg, 2011, 243 pp.

[11] Kim A.V., Functional differential equations. Application of i-smooth calculus, Kluwer, Dordrecht, 1999, 165 pp. | MR

[12] Tarasev A.M., Uspenskii A.A., Ushakov V.N., “Approksimatsionnye skhemy i konechno-raznostnye operatory dlya postroeniya obobschennykh reshenii uravnenii Gamiltona–Yakobi”, Izv. RAN: Tekhn. kibernetika, 1994, no. 3, 173–185

[13] Falcone M., Ferretti R., “Discrete time high order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations”, Numer. Math., 67:3 (1994), 315–344 | DOI | MR

[14] Subbotin A.I., Chentsov A.G., “Iteratsionnaya protsedura postroeniya minimaksnykh i vyazkostnykh reshenii uravnenii Gamiltona Yakobi”, Dokl. RAN, 348:6 (1996), 736–739 | MR

[15] Lukoyanov N.Yu., “Ob approksimatsii funktsionalnykh uravnenii Gamiltona–Yakobi v sistemakh s nasledstvennoi informatsiei”, Tr. Mezhdunar. seminara “Teoriya upravleniya i teoriya obobschennykh reshenii uravnenii Gamiltona–Yakobi”, posvyaschen. 60-letiyu akad. A.I. Subbotina (22-26 iyunya 2005 g., Ekaterinburg, Rossiya), v. 1, Izd-vo Uralskogo un-ta, Ekaterinburg, 2006, 108–115

[16] Krasovskii N.N., “Ob approksimatsii odnoi zadachi analiticheskogo konstruirovaniya regulyatorov v sisteme s zapazdyvaniem”, Prikl. matematika i mekhanika, 28:4 (1964), 716–724

[17] Repin Yu.M., “O priblizhennoi zamene sistem s zapazdyvaniem obyknovennymi dinamicheskimi sistemami”, Prikl. matematika i mekhanika, 29:2 (1965), 226–235

[18] Kurzhanskii A.B., “K approksimatsii lineinykh differentsialnykh uravnenii s zapazdyvaniem”, Differents. uravneniya, 3:12 (1967), 2094–2107

[19] Lukoyanov N.Yu., Plaksin A.R., “Konechnomernye modeliruyuschie povodyri v sistemakh s zapazdyvaniem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:1 (2013), 182–195 | MR

[20] Bellman R., Kuk K.L., Differentsialno-raznostnye uravneniya, Mir, M., 1967, 548 pp. | MR