Optimal trajectory in $\mathbb{R}^2$ under observation
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 40-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the problem of forming a trajectory in a given “corridor” from $\mathbb{R}^2$ such that the minimum distance from this trajectory to observers is maximal. Each observer is located outside the corridor and has an open convex observation cone overlapping the corridor. The positions of the observers and the cones are fixed. An observer can measure the distance to an object moving along the trajectory when the object is inside its cone. We describe an “optimal corridor”, i.e., the set of all optimal trajectories with given initial and terminal points. A similar problem is solved in the case when the moving object is a solid body, more exactly, a disk. For practical calculations, we propose algorithms that construct an optimal corridor and a shortest optimal trajectory for a solid object in a discrete statement. The initial continuous conditions of the problem, such as the boundaries of the corridor and the observation cones, are projected onto a discrete regular grid, and a discrete realization of the optimal corridor and its boundaries are constructed on the grid in the form of 8-connected sequences of grid nodes. The shortest optimal trajectory of the solid object is found using Dijkstra's algorithm.
Keywords: moving object, optimal trajectory, shortest path.
Mots-clés : observer
@article{TIMM_2018_24_1_a4,
     author = {V. I. Berdyshev and V. B. Kostousov and A. A. Popov},
     title = {Optimal trajectory in $\mathbb{R}^2$ under observation},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {40--52},
     year = {2018},
     volume = {24},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a4/}
}
TY  - JOUR
AU  - V. I. Berdyshev
AU  - V. B. Kostousov
AU  - A. A. Popov
TI  - Optimal trajectory in $\mathbb{R}^2$ under observation
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 40
EP  - 52
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a4/
LA  - ru
ID  - TIMM_2018_24_1_a4
ER  - 
%0 Journal Article
%A V. I. Berdyshev
%A V. B. Kostousov
%A A. A. Popov
%T Optimal trajectory in $\mathbb{R}^2$ under observation
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 40-52
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a4/
%G ru
%F TIMM_2018_24_1_a4
V. I. Berdyshev; V. B. Kostousov; A. A. Popov. Optimal trajectory in $\mathbb{R}^2$ under observation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 40-52. http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a4/

[1] Berdyshev V.I., “Dvizhuschiisya ob'ekt i nablyudatel”, Dokl. AN, 464:4 (2015), 411–413 | DOI

[2] Popov A.A., Kostousov V.B., Berdyshev V.I., “Traektoriya ob'ekta, naibolee udalennaya ot nablyudatelei”, Proc. of the 48th Internat. Youth School-Conf. “Modern Problems in Mathematics and its Applications” (Yekaterinburg, Russia, February 5 - February 11, 2017), CEUR Workshop Proceedings, 1894, 2017, 129–136 URL: http://ceur-ws.org/Vol-1894

[3] Rogers D.F., Procedural elements for computer graphics, McGraw-Hill, N Y, 1985, 430 pp.

[4] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to algorithms, 3rd ed., The MIT Press, Cambridge; London, 2009, 1312 pp. | MR