Voir la notice du chapitre de livre
@article{TIMM_2018_24_1_a3,
author = {A. L. Bagno and A. M. Tarasyev},
title = {Discrete approximation of the {Hamilton-Jacobi} equation for the value function in an optimal control problem with infinite horizon},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {27--39},
year = {2018},
volume = {24},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a3/}
}
TY - JOUR AU - A. L. Bagno AU - A. M. Tarasyev TI - Discrete approximation of the Hamilton-Jacobi equation for the value function in an optimal control problem with infinite horizon JO - Trudy Instituta matematiki i mehaniki PY - 2018 SP - 27 EP - 39 VL - 24 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a3/ LA - ru ID - TIMM_2018_24_1_a3 ER -
%0 Journal Article %A A. L. Bagno %A A. M. Tarasyev %T Discrete approximation of the Hamilton-Jacobi equation for the value function in an optimal control problem with infinite horizon %J Trudy Instituta matematiki i mehaniki %D 2018 %P 27-39 %V 24 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a3/ %G ru %F TIMM_2018_24_1_a3
A. L. Bagno; A. M. Tarasyev. Discrete approximation of the Hamilton-Jacobi equation for the value function in an optimal control problem with infinite horizon. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 27-39. http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a3/
[1] Bertsekas D. P., Dynamic programming and optimal control, v. I, Athena Scientific, Belmont, 2017, 576 pp. | MR
[2] Crandall M.G., Lions P.-L., “Viscosity solutions of Hamilton-Jacobi equations”, Trans. Amer. Math. Soc., 277:1 (1983), 1–42 | DOI | MR
[3] Dolcetta I. C., “On a discrete approximation of the Hamilton - Jacobi equation of dynamic programming”, Appl. Math. Optimiz., 10:4 (1983), 367–377 | DOI | MR
[4] Dolcetta I. C., Ishii H., “Approximate solution of the Bellman equation of deterministic control theory”, Appl. Math. Optimiz., 11:2 (1984), 161–181 | DOI | MR
[5] Adiatulina R. A., Tarasev A. M., “Differentsialnaya igra neogranichennoi prodolzhitelnosti”, Prikl. matematika i mekhanika, 51:4 (1987), 531–537 | MR
[6] Bagno A. L., Tarasev A. M., “Svoistva funktsii tseny v zadachakh optimalnogo upravleniya s beskonechnym gorizontom”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 26:1 (2016), 3–14 | DOI | MR
[7] Bagno A. L., Tarasev A. M., “Svoistva stabilnosti funktsii tseny v zadache optimalnogo upravleniya s beskonechnym gorizontom”, Tr. In-ta matematiki i mekhaniki UrO RAN, 23:1 (2017), 43–56 | DOI | MR
[8] Krasovskii A. A., Tarasev A. M., “Dinamicheskaya optimizatsiya investitsii v modelyakh ekonomicheskogo rosta”, Avtomatika i telemekhanika, 2007, no. 10, 38–52
[9] Magnus Ya. R., Katyshev P. K., Peresetskii A. A., Ekonometrika. Nachalnyi kurs, ucheb. 6-e izd., pererab. i dop., Delo, M., 2004, 576 pp.
[10] Subbotin A. I., Minimaksnye neravenstva i uravneniya Gamiltona - Yakobi, Nauka, M., 1991, 216 pp. | MR
[11] Subbotin A. I., Tarasev A. M., “Sopryazhennye proizvodnye funktsii tseny differentsialnoi igry”, Dokl. AN SSSR, 283:3 (1985), 559–564 | MR
[12] Sultanova R. A., Minimaksnye resheniya uravnenii v chastnykh proizvodnykh, dis....kand. fiz.-mat. nauk, Ural. gos. un-t im. A. M. Gorkogo, 1995, 192 pp.