Discrete approximation of the Hamilton-Jacobi equation for the value function in an optimal control problem with infinite horizon
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 27-39
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An infinite horizon optimal control problem is considered in which the quality functional contains an index with discount factor under the integral sign. The main feature of the problem is the unbounded index, which allows to analyze economic growth models with linear, power, and logarithmic utility functions. A discrete approximation of the Hamilton-Jacobi equation is explored for constructing the value function of the original problem. The Holder condition and the sublinear growth condition are derived for the solution of the discrete approximation equation. Uniform convergence of solutions of approximation equations to the value function of the optimal control problem is shown. The obtained results can be used to construct grid approximation methods for the value function of an optimal control problem on an infinite time interval. The proposed methods are effective tools in the modeling of economic growth processes.
Keywords: discrete approximation, optimal control, Hamilton-Jacobi equation, viscosity solution, infinite horizon, value function.
@article{TIMM_2018_24_1_a3,
     author = {A. L. Bagno and A. M. Tarasyev},
     title = {Discrete approximation of the {Hamilton-Jacobi} equation for the value function in an optimal control problem with infinite horizon},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {27--39},
     year = {2018},
     volume = {24},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a3/}
}
TY  - JOUR
AU  - A. L. Bagno
AU  - A. M. Tarasyev
TI  - Discrete approximation of the Hamilton-Jacobi equation for the value function in an optimal control problem with infinite horizon
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 27
EP  - 39
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a3/
LA  - ru
ID  - TIMM_2018_24_1_a3
ER  - 
%0 Journal Article
%A A. L. Bagno
%A A. M. Tarasyev
%T Discrete approximation of the Hamilton-Jacobi equation for the value function in an optimal control problem with infinite horizon
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 27-39
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a3/
%G ru
%F TIMM_2018_24_1_a3
A. L. Bagno; A. M. Tarasyev. Discrete approximation of the Hamilton-Jacobi equation for the value function in an optimal control problem with infinite horizon. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 27-39. http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a3/

[1] Bertsekas D. P., Dynamic programming and optimal control, v. I, Athena Scientific, Belmont, 2017, 576 pp. | MR

[2] Crandall M.G., Lions P.-L., “Viscosity solutions of Hamilton-Jacobi equations”, Trans. Amer. Math. Soc., 277:1 (1983), 1–42 | DOI | MR

[3] Dolcetta I. C., “On a discrete approximation of the Hamilton - Jacobi equation of dynamic programming”, Appl. Math. Optimiz., 10:4 (1983), 367–377 | DOI | MR

[4] Dolcetta I. C., Ishii H., “Approximate solution of the Bellman equation of deterministic control theory”, Appl. Math. Optimiz., 11:2 (1984), 161–181 | DOI | MR

[5] Adiatulina R. A., Tarasev A. M., “Differentsialnaya igra neogranichennoi prodolzhitelnosti”, Prikl. matematika i mekhanika, 51:4 (1987), 531–537 | MR

[6] Bagno A. L., Tarasev A. M., “Svoistva funktsii tseny v zadachakh optimalnogo upravleniya s beskonechnym gorizontom”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 26:1 (2016), 3–14 | DOI | MR

[7] Bagno A. L., Tarasev A. M., “Svoistva stabilnosti funktsii tseny v zadache optimalnogo upravleniya s beskonechnym gorizontom”, Tr. In-ta matematiki i mekhaniki UrO RAN, 23:1 (2017), 43–56 | DOI | MR

[8] Krasovskii A. A., Tarasev A. M., “Dinamicheskaya optimizatsiya investitsii v modelyakh ekonomicheskogo rosta”, Avtomatika i telemekhanika, 2007, no. 10, 38–52

[9] Magnus Ya. R., Katyshev P. K., Peresetskii A. A., Ekonometrika. Nachalnyi kurs, ucheb. 6-e izd., pererab. i dop., Delo, M., 2004, 576 pp.

[10] Subbotin A. I., Minimaksnye neravenstva i uravneniya Gamiltona - Yakobi, Nauka, M., 1991, 216 pp. | MR

[11] Subbotin A. I., Tarasev A. M., “Sopryazhennye proizvodnye funktsii tseny differentsialnoi igry”, Dokl. AN SSSR, 283:3 (1985), 559–564 | MR

[12] Sultanova R. A., Minimaksnye resheniya uravnenii v chastnykh proizvodnykh, dis....kand. fiz.-mat. nauk, Ural. gos. un-t im. A. M. Gorkogo, 1995, 192 pp.